36 research outputs found

    Do third-year mental health nursing students feel prepared to assess physical health?

    Get PDF
    Background The life expectancy for people with mental health issues is significantly lower than the general population, however, their physical health needs are often unrecognised by health professionals. Aim To investigate whether third-year mental health nursing students are clinically prepared to undertake a pre-defined set of physical health checks. Method A 34-item questionnaire was completed by two cohorts of mental health nursing students in their third and final year. Participants self-reported on their competence to assess a range of physical health checks. 37 questionnaires were completed and analysed. Findings Three groups emerged: group 1 – 100% of students self-declared competence in assessments including temperature and pulse, group 2 – more than 50% of students self-declared competence in assessments including urinalysis and pulse oximetry, and group 3 – less than 50% of students self-declared competence in taking electrocardiograms and using the hydration assessment tool. Conclusion The student participants of this study were not adequately prepared to undertake a complete range of physical health assessments for people with mental health issues

    Sensitivity of wide band detectors to quintessential gravitons

    Get PDF
    There are no reasons why the energy spectra of the relic gravitons, amplified by the pumping action of the background geometry, should not increase at high frequencies. A typical example of this behavior are quintessential inflationary models where the slopes of the energy spectra can be either blue or mildly violet. In comparing the predictions of scenarios leading to blue and violet graviton spectra we face the problem of correctly deriving the sensitivities of the interferometric detectors. Indeed, the expression of the signal-to-noise ratio not only depends upon the noise power spectra of the detectors but also upon the spectral form of the signal and, therefore, one can reasonably expect that models with different spectral behaviors will produce different signal-to-noise ratios. By assuming monotonic (blue) spectra of relic gravitons we will give general expressions for the signal-to-noise ratio in this class of models. As an example we studied the case of quintessential gravitons. The minimum achievable sensitivity to h02ΩGWh^2_{0} \Omega_{GW} of different pairs of detectors is computed, and compared with the theoretical expectations.Comment: 10 pages in Revtex style, 3 figure

    Production and detection of relic gravitons in quintessential inflationary models

    Get PDF
    A large class of quintessential inflationary models, recently proposed by Peebles and Vilenkin, leads to post-inflationary phases whose effective equation of state is stiffer than radiation. The expected gravitational waves logarithmic energy spectra are tilted towards high frequencies and characterized by two parameters: the inflationary curvature scale at which the transition to the stiff phase occurs and the number of (non conformally coupled) scalar degrees of freedom whose decay into fermions triggers the onset of a gravitational reheating of the Universe. Depending upon the parameters of the model and upon the different inflationary dynamics (prior to the onset of the stiff evolution) the relic gravitons energy density can be much more sizeable than in standard inflationary models, for frequencies larger than 1 Hz. We estimate the required sensitivity for detection of the predicted spectral amplitude and show that the allowed region of our parameter space leads to a signal smaller (by one 1.5 orders of magnitude) than the advanced LIGO sensitivity at a frequency of 0.1 KHz. The maximal signal, in our context, is expected in the GHz region where the energy density of relic gravitons in critical units (i.e. h02ΩGWh_0^2 \Omega_{GW}) is of the order of 10610^{-6}, roughly eight orders of magnitude larger than in ordinary inflationary models. Smaller detectors (not necessarily interferometers) can be relevant for detection purposes in the GHz frequency window. We suggest/speculate that future measurements through microwave cavities can offer interesting perspectives.Comment: 24 pages in Revtex style, 7 figure

    The Pre-Big Bang Scenario in String Cosmology

    Get PDF
    We review physical motivations, phenomenological consequences, and open problems of the so-called pre-big bang scenario in superstring cosmology.Comment: 250 pages, latex, 34 figures included using epsfi

    Search for high-mass new phenomena in the dilepton final state using proton–proton collisions at View the MathML sources=13TeV with the ATLAS detector

    Get PDF
    A search is conducted for both resonant and non-resonant high-mass new phenomena in dielectron and dimuon final states. The search uses View the MathML source3.2fb−1 of proton–proton collision data, collected at View the MathML sources=13TeV by the ATLAS experiment at the LHC in 2015. The dilepton invariant mass is used as the discriminating variable. No significant deviation from the Standard Model prediction is observed; therefore limits are set on the signal model parameters of interest at 95% credibility level. Upper limits are set on the cross-section times branching ratio for resonances decaying to dileptons, and the limits are converted into lower limits on the resonance mass, ranging between 2.74 TeV and 3.36 TeV, depending on the model. Lower limits on the ℓℓqqℓℓqq contact interaction scale are set between 16.7 TeV and 25.2 TeV, also depending on the mode

    Search for the production of single vector-like and excited quarks in the Wt final state in pp collisions at s = 8 s=8 \sqrt{s}=8 TeV with the ATLAS detector

    Full text link

    Survival of Uveal Melanoma Patients Treated With Combination and Single-Agent Immunotherapy

    No full text
    corecore