2,979 research outputs found

    Three Body Resonance Overlap in Closely Spaced Multiple Planet Systems

    Full text link
    We compute the strengths of zero-th order (in eccentricity) three-body resonances for a co-planar and low eccentricity multiple planet system. In a numerical integration we illustrate that slowly moving Laplace angles are matched by variations in semi-major axes among three bodies with the outer two bodies moving in the same direction and the inner one moving in the opposite direction, as would be expected from the two quantities that are conserved in the three-body resonance. A resonance overlap criterion is derived for the closely and equally spaced, equal mass system with three-body resonances overlapping when interplanetary separation is less than an order unity factor times the planet mass to the one quarter power. We find that three-body resonances are sufficiently dense to account for wander in semi-major axis seen in numerical integrations of closely spaced systems and they are likely the cause of instability of these systems. For interplanetary separations outside the overlap region, stability timescales significantly increase. Crudely estimated diffusion coefficients in eccentricity and semi-major axis depend on a high power of planet mass and interplanetary spacing. An exponential dependence previously fit to stability or crossing timescales is likely due to the limited range of parameters and times possible in integration and the strong power law dependence of the diffusion rates on these quantities.Comment: submitted to MNRA

    Migration then assembly: Formation of Neptune mass planets inside 1 AU

    Full text link
    We demonstrate that the observed distribution of `Hot Neptune'/`Super-Earth' systems is well reproduced by a model in which planet assembly occurs in situ, with no significant migration post-assembly. This is achieved only if the amount of mass in rocky material is ∌50\sim 50--100M⊕100 M_{\oplus} interior to 1 AU. Such a reservoir of material implies that significant radial migration of solid material takes place, and that it occur before the stage of final planet assembly. The model not only reproduces the general distribution of mass versus period, but also the detailed statistics of multiple planet systems in the sample. We furthermore demonstrate that cores of this size are also likely to meet the criterion to gravitationally capture gas from the nebula, although accretion is rapidly limited by the opening of gaps in the gas disk. If the mass growth is limited by this tidal truncation, then the scenario sketched here naturally produces Neptune-mass objects with substantial components of both rock and gas, as is observed. The quantitative expectations of this scenario are that most planets in the `Hot Neptune/Super-Earth' class inhabit multiple-planet systems, with characteristic orbital spacings. The model also provides a natural division into gas-rich (Hot Neptune) and gas-poor (Super-Earth) classes at fixed period. The dividing mass ranges from ∌3M⊕\sim 3 M_{\oplus} at 10 day orbital periods to ∌10M⊕\sim 10 M_{\oplus} at 100 day orbital periods. For orbital periods <10< 10 days, the division is less clear because a gas atmosphere may be significantly eroded by stellar radiation.Comment: 41 pages in preprint style, 15 figures, final version accepted to Ap

    Characterizing Multi-planet Systems with Classical Secular Theory

    Full text link
    Classical secular theory can be a powerful tool to describe the qualitative character of multi-planet systems and offer insight into their histories. The eigenmodes of the secular behavior, rather than current orbital elements, can help identify tidal effects, early planet-planet scattering, and dynamical coupling among the planets, for systems in which mean-motion resonances do not play a role. Although tidal damping can result in aligned major axes after all but one eigenmode have damped away, such alignment may simply be fortuitous. An example of this is 55 Cancri (orbital solution of Fischer et al., 2008) where multiple eigenmodes remain undamped. Various solutions for 55 Cancri are compared, showing differing dynamical groupings, with implications for the coupling of eccentricities and for the partitioning of damping among the planets. Solutions for orbits that include expectations of past tidal evolution with observational data, must take into account which eigenmodes should be damped, rather than expecting particular eccentricities to be near zero. Classical secular theory is only accurate for low eccentricity values, but comparison with other results suggests that it can yield useful qualitative descriptions of behavior even for moderately large eccentricity values, and may have advantages for revealing underlying physical processes and, as large numbers of new systems are discovered, for triage to identify where more comprehensive dynamical studies should have priority.Comment: Published in Celestial Mechanics and Dynamical Astronomy, 25 pages, 10 figure

    Lattice Gas Automata for Reactive Systems

    Full text link
    Reactive lattice gas automata provide a microscopic approachto the dynamics of spatially-distributed reacting systems. After introducing the subject within the wider framework of lattice gas automata (LGA) as a microscopic approach to the phenomenology of macroscopic systems, we describe the reactive LGA in terms of a simple physical picture to show how an automaton can be constructed to capture the essentials of a reactive molecular dynamics scheme. The statistical mechanical theory of the automaton is then developed for diffusive transport and for reactive processes, and a general algorithm is presented for reactive LGA. The method is illustrated by considering applications to bistable and excitable media, oscillatory behavior in reactive systems, chemical chaos and pattern formation triggered by Turing bifurcations. The reactive lattice gas scheme is contrasted with related cellular automaton methods and the paper concludes with a discussion of future perspectives.Comment: to appear in PHYSICS REPORTS, 81 revtex pages; uuencoded gziped postscript file; figures available from [email protected] or [email protected]

    How formation time-scales affect the period dependence of the transition between rocky super-Earths and gaseous sub-Neptunesand implications for η⊕

    Get PDF
    One of the most significant advances by NASA's Kepler{\mathit Kepler} Mission was the discovery of an abundant new population of highly irradiated planets with sizes between the Earth and Neptune. Subsequent analysis showed that at ~1.5 Earth radii there is a transition from a population of predominantly rocky super-Earths to non-rocky sub-Neptunes, which must have substantial volatile envelopes. Determining the origin of these highly irradiated rocky planets will be critical to our understanding of low-mass planet formation and the frequency of potentially habitable Earth-like planets. These short-period rocky super-Earths could simply be the stripped cores of sub-Neptunes, which have lost their envelopes due to atmospheric photo-evaporation or other processes, or they might instead be a separate population of inherently rocky planets, which never had significant envelopes. Using models of atmospheric photo-evaporation, we show that if most bare rocky planets are the evaporated cores of sub-Neptunes then the transition radius should decrease as surveys push to longer orbital periods, since on wider orbits only planets with smaller less massive cores can be stripped. On the other hand, if most rocky planets formed after their disks dissipate then these planets will have formed without initial gaseous envelopes. In this case, we use N-body simulations of planet formation to show that the transition radius should increase with orbital period, due to the increasing solid mass available in their disks. Moreover, we show that distinguishing between these two scenarios should be possible in coming years with radial velocity follow-up of planets found by TESS. Finally, we discuss the broader implications of this work for current efforts to measure η⊕\eta_{\mathrm{\oplus}}, which may yield significant overestimates if most rocky planets form as evaporated cores.Comment: 8 pages, 4 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore