821 research outputs found

    Validity of path thermodynamics in reactive systems

    Get PDF
    Path thermodynamic formulation of nonequilibrium reactive systems is considered. It is shown through simple practical examples that this approach can lead to results that contradict well established thermodynamic properties of such systems. Rigorous mathematical analysis confirming this fact is presented

    Reply to "Comment on `Validity of path thermodynamic description of reactive systems: Microscopic simulations'

    Full text link
    The Comment's author argues that a correct description of reactive systems should incorporate the explicit interaction with reservoirs, leading to a unified system-reservoirs entity. However, this proposition has two major flaws. Firstly, as we will emphasize, this entity inherently follows a thermodynamic equilibrium distribution. In the Comment, no indication is provided on how to maintain such a system-reservoirs entity in a non-equilibrium state. Secondly, contrary to the author's claim, the inclusion of system-reservoir interaction in traditional stochastic modeling of reactive systems does not automatically alter the limited applicability of path thermodynamics to problematic reactive systems. We will provide a simple demonstration to illustrate that certain elementary reactions may not involve any changes in reservoir components, which seems to have been overlooked by the author.Comment: To appear in Physical Review

    Factors Affecting Consumers' Trust Towards E-Commerce: Evidence from Jordanian Students’ Perspective

    Get PDF
    E-commerce has grown widely as a new mode of trading goods and service to every work and aspect of the society due to the rapid growth of the use of internet. However, consumers are still sensitive towards the trust of e-commerce. This study examines the factors that are affecting consumers’ trust towards e-commerce, with evidence from students in Jordanian university. Using the sample of 150 university students in Jordan through questionnaires, the findings indicate that there is significant effect of consumer behaviour as well as privacy and security on consumers’ trust. This study recommends that more extensive culture awareness programs should be provided by both public and private sectors in order to provide Jordanian population with needed information about e-commerce and its benefits; and also pay more attention to the security issues and communicate their actions toward ensuring secured services to their consumers. Keywords: e-commerce, consumers, trust, behaviors, security, privac

    Statistical Error in Particle Simulations of Hydrodynamic Phenomena

    Full text link
    We present predictions for the statistical error due to finite sampling in the presence of thermal fluctuations in molecular simulation algorithms. Specifically, we establish how these errors depend on Mach number, Knudsen number, number of particles, etc. Expressions for the common hydrodynamic variables of interest such as flow velocity, temperature, density, pressure, shear stress and heat flux are derived using equilibrium statistical mechanics. Both volume-averaged and surface-averaged quantities are considered. Comparisons between theory and computations using direct simulation Monte Carlo for dilute gases, and molecular dynamics for dense fluids, show that the use of equilibrium theory provides accurate results.Comment: 24 pages postscript (including 16 figures

    Fluctuations in fluids in thermal nonequilibrium states below the convective Rayleigh-Benard instability

    Get PDF
    Starting from the linearized fluctuating Boussinesq equations we derive an expression for the structure factor of fluids in stationary convection-free thermal nonequilibrium states, taking into account both gravity and finite-size effects. It is demonstrated how the combined effects of gravity and finite size causes the structure factor to go through a maximum value as a function of the wave number qq. The appearance of this maximum is associated with a crossover from a q−4q^{-4} dependence for larger qq to a q2q^2 dependence for very small qq. The relevance of this theoretical result for the interpretation of light scattering and shadowgraph experiments is elucidated. The relationship with studies on various aspects of the problem by other investigators is discussed. The paper thus provides a unified treatment for dealing with fluctuations in fluid layers subjected to a stationary temperature gradient regardless of the sign of the Rayleigh number RR, provided that RR is smaller than the critical value RcR_\mathrm{c} associated with the appearance of Rayleigh-B\'{e}nard convection.Comment: 33 pages, 6 figures, accepted for publication: Physica

    Spurious diffusion in particle simulations of the Kolmogorov flow

    Full text link
    Particle simulations of the Kolmogorov flow are analyzed by the Landau-Lifshitz fluctuating hydrodynamics. It is shown that a spurious diffusion of the center of mass corrupts the statistical properties of the flow. The analytical expression for the corresponding diffusion coefficient is derived.Comment: 10 pages, no figure

    Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime

    Full text link
    The Landau-Lifshitz fluctuating hydrodynamics is used to study the statistical properties of the linearized Kolmogorov flow. The relative simplicity of this flow allows a detailed analysis of the fluctuation spectrum from near equilibrium regime up to the vicinity of the first convective instability threshold. It is shown that in the long time limit the flow behaves as an incompressible fluid, regardless of the value of the Reynolds number. This is not the case for the short time behavior where the incompressibility assumption leads in general to a wrong form of the static correlation functions, except near the instability threshold. The theoretical predictions are confirmed by numerical simulations of the full nonlinear fluctuating hydrodynamic equations.Comment: 20 pages, 4 figure

    Maxwellian gas undergoing a stationary Poiseuille flow in a pipe

    Full text link
    The hierarchy of moment equations derived from the nonlinear Boltzmann equation is solved for a gas of Maxwell molecules undergoing a stationary Poiseuille flow induced by an external force in a pipe. The solution is obtained as a perturbation expansion in powers of the force (through third order). A critical comparison is done between the Navier-Stokes theory and the predictions obtained from the Boltzmann equation for the profiles of the hydrodynamic quantities and their fluxes. The Navier-Stokes description fails to first order and, especially, to second order in the force. Thus, the hydrostatic pressure is not uniform, the temperature profile exhibits a non-monotonic behavior, a longitudinal component of the flux exists in the absence of longitudinal thermal gradient, and normal stress differences are present. On the other hand, comparison with the Bhatnagar-Gross-Krook model kinetic equation shows that the latter is able to capture the correct functional dependence of the fields, although the numerical values of the coefficients are in general between 0.38 and 1.38 times the Boltzmann values. A short comparison with the results corresponding to the planar Poiseuille flow is also carried out.Comment: 31 pages, 6 figures; to be published in Physica
    • 

    corecore