87 research outputs found

    Imaging-guided interventions modulating portal venous flow: Evidence and controversies

    Get PDF
    Portal hypertension is defined by an increase in the portosystemic venous gradient. In most cases, increased resistance to portal blood flow is the initial cause of elevated portal pressure. More than 90% of cases of portal hypertension are estimated to be due to advanced chronic liver disease or cirrhosis. Transjugular intrahepatic portosystemic shunts, a non-pharmacological treatment for portal hypertension, involve the placement of a stent between the portal vein and the hepatic vein or inferior vena cava which helps bypass hepatic resistance. Portal hypertension may also be a result of extrahepatic portal vein thrombosis or compression. In these cases, percutaneous portal vein recanalisation restores portal trunk patency, thus preventing portal hypertension-related complications. Any portal blood flow impairment leads to progressive parenchymal atrophy and triggers hepatic regeneration in preserved areas. This provides the rationale for using portal vein embolisation to modulate hepatic volume in preparation for extended hepatic resection. The aim of this paper is to provide a comprehensive evidence-based review of the rationale for, and outcomes associated with, the main imaging-guided interventions targeting the portal vein, as well as to discuss the main controversies around such approaches. (c) 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/)

    Assessment of portal hypertension severity using machine learning models in patients with compensated cirrhosis

    Get PDF
    Background & Aims: In individuals with compensated advanced chronic liver disease (cACLD), the severity of portal hypertension (PH) determines the risk of decompensation. Invasive measurement of the hepatic venous pressure gradient (HVPG) is the diagnostic gold standard for PH. We evaluated the utility of machine learning models (MLMs) based on standard laboratory parameters to predict the severity of PH in individuals with cACLD. Methods: A detailed laboratory workup of individuals with cACLD recruited from the Vienna cohort (NCT03267615) was utilised to predict clinically significant portal hypertension (CSPH, i.e., HVPG ≥10 mmHg) and severe PH (i.e., HVPG ≥16 mmHg). The MLMs were then evaluated in individual external datasets and optimised in the merged cohort. Results: Among 1,232 participants with cACLD, the prevalence of CSPH/severe PH was similar in the Vienna (n = 163, 67.4%/35.0%) and validation (n = 1,069, 70.3%/34.7%) cohorts. The MLMs were based on 3 (3P: platelet count, bilirubin, international normalised ratio) or 5 (5P: +cholinesterase, +gamma-glutamyl transferase, +activated partial thromboplastin time replacing international normalised ratio) laboratory parameters. The MLMs performed robustly in the Vienna cohort. 5P-MLM had the best AUCs for CSPH (0.813) and severe PH (0.887) and compared favourably to liver stiffness measurement (AUC: 0.808). Their performance in external validation datasets was heterogeneous (AUCs: 0.589-0.887). Training on the merged cohort optimised model performance for CSPH (AUCs for 3P and 5P: 0.775 and 0.789, respectively) and severe PH (0.737 and 0.828, respectively). Conclusions: Internally trained MLMs reliably predicted PH severity in the Vienna cACLD cohort but exhibited heterogeneous results on external validation. The proposed 3P/5P online tool can reliably identify individuals with CSPH or severe PH, who are thus at risk of hepatic decompensation. Impact and implications: We used machine learning models based on widely available laboratory parameters to develop a non-invasive model to predict the severity of portal hypertension in individuals with compensated cirrhosis, who currently require invasive measurement of hepatic venous pressure gradient. We validated our findings in a large multicentre cohort of individuals with advanced chronic liver disease (cACLD) of any cause. Finally, we provide a readily available online calculator, based on 3 (platelet count, bilirubin, international normalised ratio) or 5 (platelet count, bilirubin, activated partial thromboplastin time, gamma-glutamyltransferase, choline-esterase) widely available laboratory parameters, that clinicians can use to predict the likelihood of their patients with cACLD having clinically significant or severe portal hypertension

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Circulating microparticles: square the circle

    Get PDF
    Background: The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions: Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes

    Portal vein recanalisation alone to treat severe portal hypertension in non-cirrhotic patients with chronic extrahepatic portal vein obstruction.

    No full text
    We aimed to evaluate long-term outcome of patients with chronic non-cirrhotic extrahepatic portal vein obstruction (CNC-EHPVO) who underwent portal vein recanalisation (PVR) without transjugular intrahepatic portosystemic shunt (TIPS) insertion and to determine factors predicting PVR failure and stent occlusion. This retrospective monocentric study included all patients who underwent PVR without TIPS insertion in the context of CNC-EHPVO between the years 2000 and 2019. Primary patency was defined by the absence of a complete stent occlusion on follow-up imaging. A total of 31 patients underwent PVR with a median follow-up of 52 months (24-82 months). Indications were gastrointestinal bleeding (n = 13), abdominal pain attributed to CNC-EHPVO (n = 7), prior to abdominal surgery (n = 4), and others (n = 7). Technical success was obtained in 27 patients. PVR failure was associated with extension within the intrahepatic portal veins (p = 0.005) and recanalisation for abdominal pain (p = 0.02). Adverse events occurred in 6 patients with no mortality. Anticoagulation was administered in 21 patients after technical success of PVR. In patients with technical success, 5-year primary patency was 73% and was associated with improved muscle mass (p = 0.007) and decreased spleen volume (p = 0.01) at 1 year. Furthermore, 21 (78%) patients with PVR technical success were free of portal hypertension complication at 5 years. PVR without TIPS insertion was feasible and safe in selected patients with CNC-EHPVO and portal hypertension with past or expected complications. Primary patency at 5 years was obtained in 3 of 4 patients with technical success of PVR and was associated with a control of complications of CNC-EHPVO. PVR was associated with improvement of sarcopenia and decreased spleen volume at 1 year. Patients with chronic obstruction of the portal vein and without cirrhosis or malignancy can develop complications related to the high pressure in the venous system. The present study reports long-term favourable outcome of patients in whom the obstruction was treated with stents
    corecore