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Abstract

The aberrant hemostasis is a common manifestation of cancer, and venous thromboembolism (VTE) is the
second leading cause of cancer patients’ mortality. Tissue factor (TF), comprising of a 47-kDa transmembrane
protein that presents in subendothelial tissues and leukocytes and a soluble isoform, have distinct roles in the
initiation of extrinsic coagulation cascade and thrombosis. Laboratory and clinical evidence showed the deviant
expression of TF in several cancer systems and its tumor-promoting effects. TF contributes to myeloid cell recruitment
in tumor stroma, thereby remodeling of tumor microenvironment. Additionally, the number of TF-positive-microparticles
(TF+MP) from tumor origins correlates with the VTE rates in cancer patients. In this review, we summarize our current
understanding of the TF regulation and roles in tumor progression and clinical complications.

Keywords: Tissue factor, Tumor microenvironment, Venous thromboembolism, Microparticles, Coagulation
Introduction
Tissue factor (TF), which consist of a 47-KDa-glycoprotein
consisting of 263 amino acids (aa) (also named full-length
TF (flTF) factor III, thromboplastin, or CD142) and an al-
ternatively splice isoform, are encoded by F3 gene. The F3
gene locates on chromosome 1p22-p21 and contains 6
exons that produce a precursor protein with 294 amino
acids. After posttranscriptional modification, the functional
structure of precursor turns out to be a sausage shape
membrane protein consisting of an extracellular domain
(219 aa), a transmenbrane residue (23 aa) and a cytoplas-
mic part (21 aa) [1]. flTF is critical to initiate the extrinsic
coagulation cascade in response to vascular endothelial dis-
ruption and enhances cell proliferation and migration [2].
The alternatively splice isoform of TF was identified in

2003. As this isoform is a splice variant, it was named al-
ternatively spliced tissue factor (asTF). Compared to
flTF, asTF is translated by a truncated mRNA transcript
that lacks exon 5. Exon 5 of TF contains an exonic spli-
cing enhancer (ESE) sequence motif, which can bind to
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the serine/arginine-rich proteins alternative splicing fac-
tor/pre-mRNA-splicing factor SF2 (ASF/SF2) and serine-
rich protein55 (SRp55), leading to the generation of flTF
mRNA and translation of the flTF isoform protein [3].
The fusion of exon 4 and 6 creates a frameshift mutation
and leads to a unique C-terminus, which enables asTF to
be soluble and be secreted into extracellular fluids [4].
The coagulation activity of asTF has been debated since it
was identified. Because asTF retains the conserved resi-
dues Lys165 and Lys166 which are important for sub-
strate recognition during TF/factor VII activated (FVIIa)
complex formation, some researchers believe that asTF
maintains the factor X activated (FXa) generation ability
and promote coagulation. Indeed, its presence in thrombi
was demonstrated [4]. TNF-α and IL-6 enhanced TF-
induced coagulation in human umbilical venous endothelial
cells (HUVECs) [5]. However, the location on a phospho-
lipid membrane, a prerequisite for efficient macromolecular
substrate binding, was abolished by the soluble C-terminus
of asTF, which may result in the disability of its pro-
coagulant effect. Meanwhile, the experimental methods
used in those studies did not exclude the possibility that the
coagulant activity might be due to flTF indirectly, since it is
extremely difficult to distinguish the precise role of two TF
isoforms in coagulation in pro-coagulant assay [6]. More-
over, in FX activation assay, the cell lysate of asTF_FLAG-
transfected HEK293 cells could not lead to FX activation,
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while flTF_FLAG-transfected HEK293 cells showed signifi-
cant conversion of FX to FXa [7]. To date, no tissue and/or
naturally occurring biological settings have been described
that asTF is present without the full length isoform flTF [8]
new approaches with higher sensitivity and specificity are
needed for this scientific issue.
In 1865, Armand Trousseau first described thrombophle-

bitis (also known as Trousseau’s syndrome) as a complica-
tion of pancreatic cancer. Since then, the idea that TF is
involved in cancer development, including cell proliferation,
survival, angiogenesis, epithelial-to-mesenchymal tran-
sition (EMT), and metastasis, has been gradually accepted
[4,9-15]. In some malignant cancer systems, elevated TF
expression can be detected in the serum as well as in tumor
tissues [16-18]. In addition, tumor-derived TF-positive mi-
croparticles (TF+-MPs) are abundant in the plasma of pa-
tients with advanced diseases [19-21], which also highly
correlates with venous thromboembolism (VTE) [22,23].
These findings indicate that targeting TF have potential sig-
nificance for tumor diagnosis and therapy.
In this review, we shall overview the current under-

standing of the regulation and functions of TF in different
stages of cancer progression. TF-related complications in
tumor patients and TF-targeted therapy in clinical trials
will also be discussed.
Figure 1 Signaling pathways involved in TF expression. TGF-β, VEGF, H
transcription and translation.
Sources of TF and their regulation in cancer
Ectopic expression of TF has been detected in several
type of cancers, including cervical cancers [18], epithelial
ovarian cancer (EOC) [24], breast cancer [25], brain tu-
mors [26], pancreatic cancer [27], gastric cancer [28],
prostate cancer [29], colorectal cancer (CRC) [30], lung
cancer [31], melanoma [32], and several cancer cell lines,
including human promyelocytic leukemia tumor cell
lines HL-60, glioma cell line U343, gastric cell line
KATOIII, SNU-5 and MKN-74, colon cancer line HCT116,
epidermoid carcinoma cell line A431, melanoma cell line
WM1341B and WM938A [4,33]. In addition, endothelial
cells of tumor blood vessels, fibroblast and inflammatory
cells also express TF [34,35]. Cervical tumors, pancreatic
cancer and breast cancer specimens expressed asTF in both
tumor cells and the stroma [12,36,37]. Two distinct forms of
flTF, membrane-bound flTF [38] and TF+-MPs [39], are im-
portant for malignancy progression. Both tumor cells and
monocytes are the main sources of TF+-MPs. Platelets and
neutrophils also contribute to the production of TF+-MPs
[19]. For the detail cell source of TF, see online GEO data-
base (GSE3239).
Given the aberrant TF expression in tumor cells,

oncogenic signaling pathways participate in TF regula-
tion (Figure 1). Evidence from in vivo experiments and
GF, EGF, TNFα, and hypoxia challenge as well as p53 each regulates TF
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clinical data revealed that the proto-oncogene K-ras and
mutation of the tumor suppression gene p53, are pri-
marily responsible for the upregulation of flTF. The loss
function of p53 or activation of K-ras results in the acti-
vation of mitogen-activated protein kinase (MAPK)/
phosphoinositide-3 kinase (PI3K) signaling pathway and
subsequent induction of flTF expression [40,41]. In
squamous cell carcinoma and brain tumors, epidermal
growth factor receptor (EGFR) and its mutant form
EGFRvIII also regulate the expression of flTF, FVII,
protease-activated receptor 1 (PAR1) and PAR2 [42].
Additionally, EGFR can activate TF transcription via acti-
vator protein-1 (AP-1), thus further increases TF expres-
sion [43]. AsTF expression is modulated by SF2/ASF and
SRp75 through the PI3K/Akt pathway [44]. c-MET-Src
family kinases are required for hepatocyte growth factor
(HGF)/scatter factor induced TF expression in medullo-
blastoma cells. Mutation of c-MET leads to the anti-
apoptotic response and resistance to chemotherapy [45].
Retinoblastoma protein (Rb), which can be induced by
TNF-α [46], is an important oncogenic element leading to
the aberrant expression patterns and proliferation of can-
cer cells [47]. flTF can be significantly upregulated in ret-
inoblastoma cells expressing mutant pRb, a member of Rb
gene family [48]. In addition, TNF-α, interferon-gamma
(IFN-γ), early growth response gene-1 (EGR-1), hypoxia-
inducible factor 1 alpha (HIF-1α), and transforming growth
factor-beta (TGF-β) upregulate flTF in cancer cells and
endothelial cells [6,49-51]. TNF-α induces both TF isoform
expression in HUVEC. Interestingly, this TNF-α-induced
TF expression can be reduced by CDC-2 like kinases (Clks)
inhibitor [52], whereas DNA topoisomerase I inhibition
upregulates asTF and reduces flTF expression [6]. Moreover,
microRNAs also involved in TF posttranscriptional regula-
tion [53,54]. Inhibition of miR-19a or miR-126 induces the
expression of both TF isoforms, asTF and flTF, in endothe-
lial cells under normal as well as under inflammatory condi-
tions, thereby reduces the flTF-mediated pro-coagulant
activity of these cells [53-55]. Moreover, miR-19b and
miR-20a, for instance, play a role in flTF regulation in
colon cancer and SLE [56,57]. In medulloblastoma, flTF
expression is accompanied by miR-520 g silencing, and
overexpression of miR-520 g suppresses flTF levels [58].
More details about the regulation of the TF isoform ex-
pression were reviewed by Leppert et al. [59].
Collectively, TF is universally expressed in tumor cells,

immune cells and stromal cells. Its overexpression in tu-
mors suggests a potential marker and therapeutic target
for cancer. Understanding the roles of TF in cancer could
potentially improve our knowledge of carcinogenesis.

Functions of TF in tumor progression
Downstream events of TF activation include thrombin
generation, fibrin deposition, platelet activation, tumor-
associated macrophage (TAM) recruitment, and metastasis
via EMT [60]. Here, we mainly focus on TF functions in
four aspects of cancer: sustaining proliferating signaling,
resisting cell death, activating invasion and metastasis,
avoiding immune destruction, and lethiferous clinical com-
plications such as VTE (Figures 2 and 3).

TF regulates tumor cell proliferation and apoptosis
flTF and asTF promote tumor cell proliferation through
different mechanisms (Figure 2) [12,61]. flTF/FVIIa com-
plex can activate PAR2, leading to AP-1 phosphorylation,
cell proliferation and migration in the colon cancer
SW620 cell line [62]. Furthermore, activation of PAR2 by
flTF induces protein kinase Cα (PKCα) phosphorylation
and translocation from the cytoplasm to the perinuclear
region, promotes ERK1/2 and NF-κB phosphorylation
[61]. Breast cancer cell apoptosis can be suppressed by
flTF via PI3K/Akt signaling pathway and reducing IL-8
and death-associated protein kinase 1 (DAPK1) [63]. The
variant isoform asTF also promotes tumor growth in pan-
creatic and lung cancer setting [31,64,65]. Different from
flTF, asTF enhances tumor cell proliferation through in-
tegrin signaling [12] which was also reviewed in detail by
Leppert et al. in 2014 [59].

TF promotes tumor angiogenesis and metastasis
Blood vessels in tumor tissues are essential for tumor pro-
gression, and neovasculature is a prerequisite for blood-
borne metastasis. In primary breast cancer cells, flTF/
FVIIa/PAR2 induces the production of pro-angiogenic
factors and immune regulators [66]. Meanwhile, evidence
from Hobbs et al. demonstrated that nude mice carrying
asTF-overexpressing pancreatic ductal adenocarcinoma
cells developed significantly larger tumors and increased
angiogenesis than flTF-overexpressing cells [65]. asTF
enhances pro-angiogenesis and pro-migration ability of
cardiac cells via inducing angiogenesis- and migration-
promoting factors such as fibroblast growth factor 2
(FGF2), cysteine-rich 61 (Cyr61) and vascular endothelial
growth factor (VEGF). Meanwhile, monocytic THP-1 cells
exhibit enhanced migration after treated with the super-
natant of asTF-overexpressing mouse cardiomyocytic HL-
1 cell [11]. Hypoxia exposure induces asTF expression in
A549 cells through alternative splicing factors Clk1 and
Clk4. The elevated asTF promotes the tube formation of
A549 cells by increasing Cyr61, CC chemokine ligand
(CCL2) and VEGF [31]. Different from flTF-PAR inter-
action, asTF possesses its potent pro-angiogenic proper-
ties through interacting with integrin β1 and β3 in
endothelial cell, eliciting focal adhesion kinase (FAK),
p42/p44, p38 MAPK and Akt phosphorylation [36].
6B4, an antibody which disrupts the TF-integrin inter-
action, can efficiently inhibit the pro-angiogenic func-
tion of asTF [67].



Figure 2 Function of TF in cancer progression. flTF forms TF/FVIIa complex and subsequently induce PAR signaling. PKC is phosphorylated by
activated PAR complex, which leads to p-PKC translocation. PAR can also induce MAPK and PI3K activation, both of which trigger pro-tumor
effects, such as proliferation, angiogenesis and metastasis. Binding to activator protein (AP) can also induce c-Jun upregulation and in turn
promote tumor progression. Moreover, flTF binding to ABP-280 leads to actin modulation, resulting in tumor cells metastasis. asTF binds to
integrin receptor and enhance the ability of migration, in turn leading to tumor cell angiogenesis and migration.
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In addition to the pro-angiogenic effects in cancer, TF
also regulate cytoskeleton remodeling, which enhances
tumor cell migration and subsequently promotes metas-
tasis. flTF stimulates tumor cell migration through cyto-
plasmic domain by activating p38 in a Rac 1 dependent
manner [68]. Specific interaction between the flTF cyto-
plasmic domain with actin-binding protein 280 (ABP-
280) also contributes to tumor cell metastasis and vascular
remodeling [69]. However, flTF exhibits its pro-metastatic
characteristics mainly by initiating the pro-coagulant cas-
cade, including thrombin formation, fibrin generation and
platelet activation [70,71]. The fibrin (ogen)-platelet clot
formation is essential for generating a shield around tumor
cells to facilitate the spread of tumor cells and the escape of
newly formed micrometastasis from natural killer (NK) cell-
mediated cytolysis [72,73]. TFPI, an inhibitor of TF, can
significantly reduce the metastasis of B16F10 murine mel-
anoma cells [74]. The TF-induced coagulation can pro-
mote TAMs recruitment and the establishment of the
pro-metastatic niche [75].
Cancer stem cells (CSC), which express CD133 [76],

CD44, ATP-binding cassette sub-family G member 2
(ABCG2) and Aldehyde dehydrogenases (ALDH) [77],
are a subpopulation of tumor cells that display self-
renewal and the ability to give rise to heterogeneous
lineages of cancer cells. These heterogeneous cells are
responsible for tumor initiation, angiogenesis, and me-
tastasis. Results from our lab revealed that CD133+

ovarian cancer stem cells remarkably over express flTF
compared with CD133− cancer cells [78]. Moreover,
evidence from Chloe C. Milsom and her colleagues
demonstrated that the TF-blocking antibody (CNTO
859) delays A431 cell initiation and metastasis through
blocking EMT [79]. The functions of TF in angiogen-
esis and metastasis as well as the location of CSCs in
the perivascular niche suggest that the interfering with
CSCs by targeting TF would be of interest and worth
for further research.
Hence, the expression of TF can effectively enhance

angiogenesis and coagulation-associated metastasis via
either the interaction of the cytoplasmic domain with
the PAR family, or through the integrin signaling path-
way (Figures 2 and 3).

TF modulate immune responses within the tumor
microenvironment
Cytotoxic T lymphocytes and NK cells are the major ef-
fector cells mediating anti-tumor immunity. However,



Figure 3 Cancer cells escape from T/NK cell immunity via flTF. flTF expressed on tumor cell surface tiggers local coagulation cascase, leading
to thrombin gerneration. Thrombin induce C5 cleavage and C5a gerneration. C5a recruits MDSCs into tumor microenvironment and suppress T
cell and NK cell anergy. Micrometastasis of tumor cells generates fibrin shield via flTF-induced coagulation, thereby preventing NK cell-induced cytolysis.
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anti-tumor immunity is abrogated primarily due to the
dysfunction of cytotoxic T lymphocytes and NK cells
and the accumulation of myeloid-derived suppressor
cells (MDSCs) in the tumor microenvironment [80]. As
mentioned above, flTF is responsible for local thrombin
generation and fibrin deposition. Once thrombin is gen-
erated, it can directly cleaves complement component
C5 to produce C5a and C5b [81]. C5a, also known as
anaphylatoxin, has a pro-tumor effect via recruiting
MDSCs to the tumor microenvironment, resulting in an
immunosuppressive milieu [82] (Figure 3). Meanwhile,
TF-mediated thrombosis within the tumor microenvir-
onment may cause local ischemia and hypoxia, leading
to the local inflammatory response and tumor tissue ne-
crosis. The TF-induced hypoxia could in turn upregulate
flTF, Clk1 and Clk4, resulting in asTF production [31].
This potential positive feedback loop may contribute to
tumor cell proliferation and angiogenesis, as well as in-
crease MDSC infiltration within the tumor microenvir-
onment. TF-triggered tumor cell-clot formation induces
vascular cell adhesion molecule-1 (VCAM-1) expression
and the recruitment of myeloid cells, and promotes
tumor invasion and metastasis [83]. Taken together,
TF assists tumor cells to metastasis and escape from
the host immune system via modulating the tumor
microenvironment.

TF expression correlates with increased VTE
Since VTE, particularly deep venous thrombosis of the
lower extremities and pulmonary embolism, comprises
the second leading cause of death in cancer patients
[84], efficient anticoagulation therapies are of profound
clinical importance. Clinical studies indicate that admin-
istration of low molecular weight heparins (LMWH) in
cancer patients significantly improves survival [85-87].
The phosphatidylserine (PS) acts synergistically with

flTF to amplify its role as a coagulation initiator [21,88].
Both flTF and PS in systemic circulation assemble on
the surface of MPs from tumors, resulting in the forma-
tion of the coagulation complex. Therefore, circulating
tumor cell-derived TF+-MPs may trigger venous throm-
bosis formation in the absence of vessel injury. TF+-MPs
in the systemic circulation of patients with advanced
colorectal cancer increased the risk of VTE by two fold
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when compared with healthy controls [89]. Another
study showed that cancer patients suffering from VTE
had a higher level of TF+-MPs compared with those
without VTE [90]. In addition to the plasma antigen
level, an increase of TF+-MPs activity in cancer patients
with VTE was reported by several groups. Tessellar et al.
observed a higher level of TF+-MPs activity in acute
VTE patients than in patients without VTE [91,92].
Owens and Mackman found elevated MP-TF activity in 9
of 11 patients [19]. Similarly, Zwicher et al. reported a 7-
fold increased risk of thrombosis in VTE-free patients
with elevated TF+-MP levels than in VTE-free plus
TF+-MPs negative patients [93]. The association be-
tween mortality and the level of TF+-MPs was also
demonstrated. Tesselaar and Bharthuar individually
reported that in breast cancer and pancreaticobiliary
cancer, patients with VTE, who presented higher level
of MP-TF activity, had a lower survival rate than patients
with lower levels of MP-TF activity [23,91]. These studies
indicate that TF+-MP amount and MP-TF activity may
have prognostic values in cancer patients.

Conclusion and prospective
In conclusion, the traditional extrinsic coagulation path-
way initiator flTF and its isoform actively participate in
malignant disease progression. The signaling pathways
associated with TF are critical for tumor initiation,
growth, angiogenesis and metastasis and clinical compli-
cations such as VTE. Targeting flTF and anticoagulation
therapies have already been used for several types of
cancer [26]. Understanding the precise regulatory mech-
anisms of flTF as well as its soluble isoform asTF in
tumor progression could be of potential interest for im-
proving the theory of tumor immunoediting and devel-
oping individual therapeutic strategies for cancer.
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