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Highlights Impact and implications
� Models that can non-invasively assess portal hypertension
severity are an unmet clinical need.

� Machine learning models trained on 3/5 laboratory param-
eters enabled non-invasive assessment of portal hyperten-
sion severity.

� These models could predict portal pressures of >−10 mmHg
or >−16 mmHg in individuals with compensated cirrhosis.

� An online tool based on these models has been made
available and can be used for portal hypertension
risk stratification.
https://doi.org/10.1016/j.jhep.2022.09.012
© 2022 The Authors. Published by Elsevier B.V. on behalf of European As
the CC BY license (http://creativecommons.org/licenses/by/4.0/). J. Hepa
We used machine learning models based on widely available
laboratory parameters to develop a non-invasive model to
predict the severity of portal hypertension in individuals with
compensated cirrhosis, who currently require invasive mea-
surement of hepatic venous pressure gradient. We validated
our findings in a large multicentre cohort of individuals with
advanced chronic liver disease (cACLD) of any cause. Finally,
we provide a readily available online calculator, based on 3
(platelet count, bilirubin, international normalised ratio) or 5
(platelet count, bilirubin, activated partial thromboplastin time,
gamma-glutamyltransferase, choline-esterase) widely available
laboratory parameters, that clinicians can use to predict the
likelihood of their patients with cACLD having clinically signifi-
cant or severe portal hypertension.
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Background & Aims: In individuals with compensated advanced chronic liver disease (cACLD), the severity of portal hypertension
(PH) determines the risk of decompensation. Invasive measurement of the hepatic venous pressure gradient (HVPG) is the
diagnostic gold standard for PH. We evaluated the utility of machine learning models (MLMs) based on standard laboratory
parameters to predict the severity of PH in individuals with cACLD.
Methods: A detailed laboratory workup of individuals with cACLD recruited from the Vienna cohort (NCT03267615) was utilised to
predict clinically significant portal hypertension (CSPH, i.e., HVPG >−10 mmHg) and severe PH (i.e., HVPG >−16 mmHg). The MLMs
were then evaluated in individual external datasets and optimised in the merged cohort.
Results: Among 1,232 participants with cACLD, the prevalence of CSPH/severe PH was similar in the Vienna (n = 163, 67.4%/
35.0%) and validation (n = 1,069, 70.3%/34.7%) cohorts. The MLMs were based on 3 (3P: platelet count, bilirubin, international
normalised ratio) or 5 (5P: +cholinesterase, +gamma-glutamyl transferase, +activated partial thromboplastin time replacing in-
ternational normalised ratio) laboratory parameters. The MLMs performed robustly in the Vienna cohort. 5P-MLM had the best
AUCs for CSPH (0.813) and severe PH (0.887) and compared favourably to liver stiffness measurement (AUC: 0.808). Their
performance in external validation datasets was heterogeneous (AUCs: 0.589-0.887). Training on the merged cohort optimised
model performance for CSPH (AUCs for 3P and 5P: 0.775 and 0.789, respectively) and severe PH (0.737 and 0.828, respectively).
Conclusions: Internally trained MLMs reliably predicted PH severity in the Vienna cACLD cohort but exhibited heterogeneous
results on external validation. The proposed 3P/5P online tool can reliably identify individuals with CSPH or severe PH, who are
thus at risk of hepatic decompensation.

© 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Cirrhosis, i.e., advanced chronic liver disease (ACLD), is most
often caused by chronic viral hepatitis, alcohol-related liver
disease, and non-alcoholic fatty liver disease.1 Decompensa-
tion – which is clinically defined by the occurrence of compli-
cations such as variceal bleeding or ascites2 – is mainly driven
by portal hypertension (PH).3 Invasive measurement of the
hepatic venous pressure gradient (HVPG) represents the cur-
rent gold standard method to assess PH severity.4,5 In in-
dividuals with compensated ACLD (cACLD), decompensation
occurs almost exclusively after clinically significant portal hy-
pertension (CSPH, i.e., HVPG >−10 mmHg) has developed.6

However, an HVPG >−16 mmHg, i.e., severe PH, is linked to a
substantially increased risk of decompensation.7 In previous
studies, this cut-off was shown to be an independent predictor
Keywords: hepatic venous pressure gradient; machine learning; non-invasive testing.
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of the first decompensation.8,9 Besides, HVPG >−16 mmHg has
been linked to worse outcomes after extrahepatic surgery in a
cohort of compensated individuals, and its use in risk stratifi-
cation has improved the identification of those at high risk
following variceal bleeding episodes.10,11 Altogether, HVPG
>−16 mmHg can be used to categorise those at the highest risk
of decompensation.

While HVPG measurement establishes the diagnosis of se-
vere PH most reliably, non-invasive methods are needed to
identify cACLD at the highest risk of decompensation and for
interventional pharmaceutical trials.12

The ANTICIPATE multicentre study, including 542 in-
dividuals with cACLD, showed that liver stiffness and platelet
count are valuable non-invasive parameters to predict the
severity of PH.13 In a convolutional neural network-based
tember 2022; available online 22 September 2022
tment of Internal Medicine III, Medical University of Vienna,
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study, a machine learning model (MLM) predicted HVPG based
on histological features of picrosirius red-stained liver biopsies
from 218 individuals with non-alcoholic steatohepatitis.14 The
diagnostic accuracy was further improved by the addition of
the enhanced liver fibrosis (ELF) score, platelet count, aspartate
aminotransferase, and bilirubin. Still, this MLM approach was
based on data from invasive liver biopsy. In another prospec-
tive study on 202 participants undergoing liver biopsy and
HVPG measurement, artificial neural networks were used as a
classification prediction model to identify individuals with
cirrhosis, CSPH, and oesophageal varices.15 Nevertheless, this
approach, based on several routine serum markers, did not
surpass liver stiffness measurement as a solitary predictor.

In our multicentre study, we assessed the capability of
different MLMs – based on non-invasive readouts only – to
predict the risk of severe PH and CSPH, defined by HVPG
>−16 mmHg and >−10 mmHg, respectively, in individuals with
cACLD of different liver disease aetiologies.

Patients and methods

Study design, participant selection, and
recorded parameters

In this study, records from individuals who had previously been
recruited by corresponding centres were used. The research
protocols were approved by respective institutional commit-
tees in accordance with the 1975 Helsinki Declaration’s ethical
principles, and participation required a signed informed con-
sent form.

The internal Vienna cohort included 163 individuals with
cACLD recruited between 2017 and 2021 in the prospective
Vienna Cirrhosis Study (VICIS, NCT03267615). Specifically, the
inclusion criteria included all the following criteria: (i) cACLD of
any liver disease aetiology defined by HVPG >−6 mmHg and (ii)
written informed consent from participants to have their re-
cords processed for research purposes. In addition, exclusion
criteria were any of: (i) previous or current decompensation
(ascites, overt hepatic encephalopathy, or variceal bleeding); (ii)
invalid or unreliable HVPG measurement; or (iii) hepatic or
extrahepatic malignancies. The external validation was per-
formed by including an additional 1,069 individuals with cACLD
from international collaborators that run large-scale hepatic
haemodynamic laboratories across Europe, categorised
together as the external cohort, under the same inclusion and
exclusion criteria. Participants from the Vienna cohort were
prospectively recruited from VICIS and provided written
informed consent. Individuals from the other centres were
retrospectively included and did not sign a separate written
informed consent for this study.

Individuals with alcohol-related liver disease and viral hep-
atitis were included regardless of their aetiological status (i.e.,
abstinent/consuming alcohol, viral suppression/viraemic) at the
moment of HVPG measurement. However, this information was
utilised for subset analysis to evaluate whether this variable
affects model performance.

The HVPG measurement was performed by a respective
centre’s trained physicians, using local standard operating
procedures and according to accepted practices.5 The vast
majority of HVPG measurements represented baseline as-
sessments with participants being beta-blocker–naïve. In
those receiving beta-blockers, the medication was paused in
Journal of Hepatology, Febru
most centres for 48 h (Frankfurt and Paris 24 h) prior to HVPG
measurements. Only 28 patients from the Antwerp and
Barcelona Hospital Clinic cohorts (2.27% of the merged
cohort) underwent HVPG measurements while on beta-
blocker therapy.

In addition to the result of the HVPG measurement, partici-
pant demographics, disease activity, and clinical and
biochemical parameters were recorded for the internal Vienna
cohort. The laboratory parameters used for the 5P and 3P
models were obtained on the same day of HVPG measurement
in 73.5% of participants. In the remaining 26.5% of partici-
pants, the median time span between laboratory tests and
HVPG was 18 days, with no measurements more than 6
months apart. All 124 clinical, hemodynamic, and biochemical
parameters of the training cohort used for feature selection are
listed in Table S1.

Data pre-processing and exploration

Python (version 3.9.6) and R (v4.1.1) were used to carry out the
analyses. The pandas library (v1.3.1) was used for data
manipulation.16 Cohort demographics and predicted parame-
ters were evaluated using the Tidyverse package (v1.3.1)17 in R.
Python’s scikit-learn library (v0.24.2) was used for scaling, im-
putations, and model development.18 Statistical tests were
performed using Python’s statannot package (version 0.2.3).
The xgboost library (v1.4.0) in Python was utilised for training
the XGBoost model.19 Matplotlib (version 3.4.2) and seaborn
(version 0.11.1) libraries were used to create the figures.20

Parameters with missing entries in more than one-third of
the Vienna cohort were excluded from the analysis (Table S1).
The remaining 85 variables had a total of 782 (7.2%) missing
values. Recursive feature elimination (RFE) was performed to
select optimal parameters for prediction. Prior to RFE, we used
the k-nearest neighbours algorithm to impute the missing
values, with the number of neighbours set to five. Imputation
was performed on standardised parameters, obtained by sub-
tracting the mean and scaling to unit variance. No imputation
was applied to the external datasets.

Development of MLMs

For the development of MLMs, all pre-processed parameters of
the Vienna cohort (n = 85) were utilised. MLMs were used to
detect individuals with HVPG >−16 mmHg and HVPG
>−10 mmHg, as an additional threshold. For the prediction of
severe PH as a binary classification task, we introduced "less
severe PH" (HVPG <16 mmHg) and “high-risk” (HVPG
>−16 mmHg) class labels. A total of five classification models
were used: logistic regression (LR); multilayer perceptron
(MLP); random forest (RF); support vector machine
(SVM); XGBoost.

Feature selection for MLMs: recursive feature elimination

We used RFE for feature selection in the Vienna cohort to
identify three and five optimal variables for the classification
prediction model that can be used to identify individuals with
HVPG >−16 mmHg who are consequently at high risk of
decompensation.21 Our primary analysis incorporated 52
widely available parameters. RFE eliminated the worst ranking
parameter per iteration from each scenario’s initial set. LR was
ary 2023. vol. 78 j 390–400 391



Assessment of portal hypertension severity
used as a model for RFE to score the parameters. In addition,
we selected features from a broader set of 85 clinical variables,
which also included non-standard laboratory values not
considered to be widely available, such as the von Willebrand
factor,22 interleukin-623 or the ELF test.24

Robust estimation of classification performance using 5-
fold cross-validation

Since prediction performance might vary greatly for different
train-validation splits, repeated 5-fold cross-validation (CV) was
used for robust estimation of model performance. In each CV,
the dataset is randomly split into five subsets (folds). Prediction
performance is assessed five times in an iterative manner: one-
fold is used for validation, and the four remaining folds to train
the model. For each CV, a single AUROC (also referred to as
AUC within this frame of reference) was calculated as the mean
AUC across the five individual folds. The robust final score of
the model is the mean value of AUC means across 100 CVs.

External model validation

We applied three and five-parameter classification MLMs to the
combined external patient datasets for validation. First, we
trained MLMs in the Vienna cohort and then we evaluated their
predictive performance for HVPG >−10 mmHg and HVPG
>−16 mmHg in external cohorts. Consequently, we performed
both training and validation using a pooled (merged internal +
external cohorts) dataset, following training-test splits.
Considering the unbalanced nature of the datasets, or unequal
distribution of participants above and below the HVPG cut-off,
we applied re-sampling in a separate analysis in the merged
external cohort to address whether balancing the classes could
improve predictive power, resulting in an equal number of
participants with high-risk and less-severe PH (Fig. S5).

Extraction of LR coefficients

Final LR models were trained on the entire set of participants
for whom the variables were available. Coefficients were
extracted and used to develop a publicly available calculator to
determine the probability of severe PH. We additionally report
the threshold producing the highest Youden’s J statistic.25

Prediction of HVPG value with regression

The Lasso regression model was trained on the entire set of
participants for direct prediction of numerical HVPG values. Its
coefficients were then extracted for the online tool.

Results

Patient characteristics

The study population included 1,232 individuals with cACLD
combined from the VICIS cohort (hereafter referred to as
Vienna; n = 163) and the external cohort (n = 1,069) from 7
participating sites (Fig. 1A,B). The main aetiologies in the
Vienna cohort were viral hepatitis (30%), alcohol-related liver
disease (ALD: 23.3%), and non-alcoholic fatty liver disease
(NAFLD: 16.6%). The most prevalent aetiologies in the pooled
external cohort were similar: viral hepatitis 34.3%, NAFLD
25.2%, and ALD 20% (Fig. 1C, Table 1). Of note, the pro-
portions of individuals with CSPH or severe PH in the Vienna
392 Journal of Hepatology, Febru
(67.4%/35.0%) and external (70.3%/34.7%) cohorts were
similar. In all but one of the contributing individual centre
datasets, the number of individuals with less severe PH (HVPG
<16 mmHg) was higher than the number with high-risk PH
(HVPG >−16 mmHg). While this means that the dataset was
unbalanced, class balance correction for HVPG was not
applied for proposed models except when explicitly mentioned,
thus reflecting a real-world clinical setting.

The availability of clinical parameters was distinct between
external datasets (Fig. 1B; Fig. S1). The external datasets were
used to either validate the models with selected parameters or
in CVs, in which all datasets were pooled and then divided
several times for training and validation.
Selection of widely available parameters for assessment of
PH severity

Using RFE on the Vienna cohort, we identified the most suitable
three and five-parameter sets for MLMs (Fig. 2A, 2B) for PH risk
prediction. The resulting three-parameter (3P) model consisted
of platelet count (PLT), total serum bilirubin (BILI), and inter-
national normalised ratio (INR), while the five-parameter (5P)
model additionally included cholinesterase and gamma-
glutamyltransferase (GGT), with activated partial thrombo-
plastin time (aPTT) replacing INR. RFE-prioritised parameters
were among those with the highest Spearman correlation with
HVPG (Fig. 2A).

The chosen 5P and 3P parameter sets were then used in
multiple MLMs to investigate how well they predicted severe
PH and CSPH in internal CVs. The best performing models
were LR, RF, XGBoost, SVM, and MLP (Fig. 2C-F). Both 5P and
3P models outperformed liver stiffness measurement (LSM)
alone for the prediction of severe PH (Fig. 2G). All 5P and 3P
MLMs achieved AUC values above 0.739 for the prediction of
severe PH, reaching 0.887 and 0.813, respectively, with LR.

Surprisingly, 5P and 3P outperformed models trained on all
parameters (Table S2). Moreover, this performance was supe-
rior to employing a broad range of 52 laboratory variables
(lowest AUC: 0.663 with MLP; 0.778 with LR) (Table S2,
Fig. S2). For CSPH prediction (Fig. 2C-D), LR performed best,
with AUC scores of 0.813 (5P) and 0.784 (3P).

These “internal” results support our hypothesis that MLMs
derived from widely accessible laboratory markers can accu-
rately predict CSPH and severe PH in individuals with cACLD.
Performance of the Vienna-trained MLMs in external
validation

The 5P and 3P models trained on the Vienna cohort were
applied to external cohorts for validation (Table 2). Due to the
partial unavailability of cholinesterase, the 5P model could only
be applied to two external centres (Antwerp and Modena). For
the prediction of CSPH (i.e., of HVPG >−10 mmHg), the internally
trained 5P model showed reliable performance only in the
Modena dataset (LR: AUC = 0.691; Table 2A). The validation of
internally trained 3P MLMs for the prediction of CSPH showed
more robust performance, reaching AUCs of >0.8 in three
datasets (Table 2B), with the best AUCs observed in the Madrid
(LR: AUC = 0.859) and the Barcelona Hospital Sant Pau cohort
(LR: AUC = 0.838), which even outperformed the training cohort
prediction (LR: AUC = 0.794).
ary 2023. vol. 78 j 390–400
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Fig. 1. Characteristics of patient datasets. (A) Distribution of individuals without clinically significant portal hypertension (i.e., with HVPG <10 mmHg) vs. with
clinically significant portal hypertension (i.e., with HVPG >−10 mmHg) vs. with severe portal hypertension (i.e., HVPG >−16 mmHg) across the datasets. (B) Availability of
single variables across the different cohort datasets. The blue colour shade corresponds to the percentage of patients within the cohort with available values for each
parameter ranging from dark (complete, 100%) to white (absent, 0%). (C) Patient count per aetiology in the respective datasets. ALD, alcohol-related liver disease;
aPTT, activated partial thromboplastin time; BILI, serum bilirubin; CHE, cholinesterase; CHOL, cholestatic disease; GGT, gamma-glutamyltransferase; HVPG, hepatic
venous pressure gradient; INR, international normalised ratio; LSM, liver stiffness measurement; MELD, model for end-stage liver disease; NAFLD, non-alcoholic fatty
liver disease; PLT, platelet count.
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When applied to the HVPG >−16mmHg threshold, the internally
trained 5Pmodel reached anAUCof 0.694with RF in theModena
dataset and a lower performance of 0.521 with LR in the Antwerp
dataset (Table 2C). Although internally trained 3P MLMs reached
an AUC of >0.85, the performance was heterogeneous (Antwerp:
the best AUC of 0.61 with XGBoost, Barcelona-HSP: 0.6 with LR)
(Table 2D). Consistent with the previous threshold, the MLMs
performedevenbetter inMadrid than in theoriginal Vienna training
cohort (AUC: 0.881withLR;0.867withMLP).Ofnote,MLPusually
performed poorly for the prediction of CSPH but resulted in AUC
>0.65 for HVPG >−16 mmHg in most of the centres.

These findings support that our MLMs, trained on one
specific dataset, can then be used for PH risk prediction in new
patient cohorts, although the heterogeneity of performance is
noted. To develop a more robust approach, we therefore set
out to train models on the combined (merged) cohort.
Evaluation of the overall performance of the MLMs in the
merged cACLD cohort

Subsequently, we assessed the prediction performance of both
the 5P and 3P models in the merged cohort (combined from all
Journal of Hepatology, Febru
study datasets) using repeated CVs (Fig. 3). For prediction of
CSPH (HVPG >−10 mmHg, Fig. 3A-C), LR performed better than
other models (AUC = 0.773 with 3P, AUC = 0.754 with 5P). For
severe PH prediction (HVPG >−16 mmHg threshold), the LR
models again performed best (5P AUC = 0.812, 3P AUC =
0.735), followed by RF in 5P (AUC = 0.776) or MLP in 3P (AUC =
0.726) (Fig. 3D-E).

In the single-dataset resolution, validation results were
slightly improved and less heterogenous compared with the
internally trained setting. For both CSPH and severe PH pre-
diction, AUC scores were always above 0.625 in all cohorts,
except for the Antwerp cohort, where they hovered around
0.5 (Table 3).

The 3P LR model performed similarly to LSM alone to pre-
dict CSPH and severe PH in the merged cohort (Fig. 3C,F), and
5P MLMs showed better performance than LSM for HVPG
>−16 mmHg (Table 4). The combination of 3P and LSM reached
AUC of 0.858 for CSPH, and 5P+LSM achieved 0.901 for HVPG
>−16 mmHg. Notably, the highest performance was achieved by
3P+LSM, trained on the merged dataset, with AUC of 0.929 in
the Modena dataset (Table S3). Both models, when applied
with LSM, resulted in better prediction (Table 4, Fig. S3).
ary 2023. vol. 78 j 390–400 393



Table 1. Patient characteristics.

Variable

Cohort

Vienna External Combined

Participants, n 163 1,069 1,232
Age, years (median, IQR) 59 (51–67) 61 (54–69) 61 (54–69)
Sex, n (%)
Female 53 (32.5%) 390 (36.5%) 443 (36%)
Male 110 (67.5%) 679 (63.5%) 789 (64%)

Aetiology, n (%)
ALD 38 (23.3%) 214 (20%) 252 (20.4%)
Viral hepatitis 49 (30%) 367 (34.3%) 416 (33.8%)
ALD + viral hepatitis 9 (5.5%) 76 (7.1%) 85 (6.9%)
NAFLD 27 (16.6%) 269 (25.2%) 296 (24.0%)
Cholestatic 13 (8%) 51 (4.8%) 64 (5.2%)
Other 27 (16.6%) 92 (8.6%) 119 (9.7%)

HVPG, median (IQR) 12 (8–17.5) 13 (9–17) 13 (9–17)
VCTE-LSM, kPa median (IQR) 22.4 (15.3–35) 21.3 (14.9–32.5) 21.5 (15.0–33.2)
HVPG <16 mmHg 17.8 (13.8–26.8) 18.0 (13.7–25.9) 17.9 (13.8–26.0)
HVPG >−16 mmHg 38.9 (23.9–59.9) 32.8 (22.8–46.4) 33.8 (22.9–47.2)

MELD, median (IQR) 9 (8–11) 9 (7–10) 9 (7–10)
HVPG <16 mmHg 8 (7–10) 8 (7–9) 8 (7–9)
HVPG >−16 mmHg 10 (9–14) 10 (8.5–12) 10 (9–12)

Platelet count, G/L, median (IQR) 104 (78–143) 108 (74–152) 107 (75–151)
HVPG <16 mmHg 122 (95–167) 122 (86–170) 134 (87–169)
HVPG >−16 mmHg 81 (64–104) 83 (62–114) 83 (62–111)

Bilirubin, mg/dl, median (IQR) 0.87 (0.64–1.31) 0.96 (0.67–1.46) 0.95 (0.66–1.44)
HVPG <16 mmHg 0.76 (0.59–1.03) 0.86 (0.59–1.29) 0.84 (0.59–1.25)
HVPG >−16 mmHg 1.22 (0.92–1.86) 1.16 (0.84–1.78) 1.17 (0.85–1.79)

INR, median (IQR) 1.20 (1.10–1.40) 1.15 (1.07–1.27) 1.16 (1.07–1.30)
HVPG <16 mmHg 1.20 (1.10–1.30) 1.11 (1.04–1.22) 1.12 (1.04–1.23)
HVPG >−16 mmHg 1.40 (1.20–1.50) 1.23 (1.13–1.35) 1.25 (1.13–1.39)

GGT, U/L median (IQR) 102 (53–206) 121 (45–145) 82 (46–151)
HVPG <16 mmHg 76 (45–168) 79.5 (45–145) 79 (45–149)
HVPG >−16 mmHg 132 (83–235) 84 (47–146) 91.5 (49–156)

aPTT, s, median (IQR) 38.0 (35.0–41.2) 35.0 (31.3–39.0) 35.4 (32.0–39.5)
HVPG <16 mmHg 36.6 (33.5–39.0) 34.0 (30.5–37.4) 34.5 (31.0–38.0)
HVPG >−16 mmHg 40.1 (38.3–46.4) 36.8 (33.5–41.0) 37.8 (34.0–41.8)

Cholinesterase, kU/L median (IQR) 5.5 (4.2–7.1) 5.6 (4.0–7.2) 5.5 (4.0–7.1)
HVPG <16 mmHg 6.3 (4.8–7.5) 5.9 (4.3–7.6) 6.1 (4.6–7.5)
HVPG >−16 mmHg 4.4 (3.2–5.7) 4.5 (3.8–6.3) 4.5 (3.5–6.0)

The IQR is presented as values Q1 to Q3.
ALD, alcohol-related liver disease; aPTT, activated partial thromboplastin time; GGT, gamma-glutamyl transferase; HVPG, hepatic venous pressure gradient; NAFLD, non-alcoholic
fatty liver disease; VCTE-LSM, liver stiffness measurement by vibration-controlled transient elastography.

Assessment of portal hypertension severity
Contribution of disease activity and aetiology to
model performance

We analysed whether splitting patients according to their dis-
ease activity in the merged cohort could improve predictive
performance. To this end, we made subsets of participants with
ALD (abstinent/consuming alcohol) and viral hepatitis (sup-
pressed/viraemic) (Table S4, Fig. S4). We observed that for the
HVPG >−16 mmHg threshold, the performance of the 3P LR
model was in line or better with inactive disease (ALD abstinent
AUC = 0.775; viral suppressed AUC = 0.759). The results were
consistent and slightly better for the HVPG >−10 mmHg pre-
diction (Table S4).

Aetiology-wise, the highest performance was achieved in
the NAFLD subset (n = 286, AUC = 0.808). The lowest results
were observed in the subset with cholestasis, which was rela-
tively small (n = 63, AUC = 0.666) (Table S4). Nevertheless, a re-
394 Journal of Hepatology, Febru
analysis of the whole cohort without cholestasis led to only
minor improvements (AUC = 0.742 vs. 0.737) (Table S4). In
conclusion, the MLMs can be applied to patient datasets
without accounting for the underlying aetiology or dis-
ease activity.

Balancing datasets does not significantly improve the
predictive power

Unbalanced datasets are often obtained in clinical studies,
where a particular selection bias is present. Thus, we explored
whether correcting for the HVPG class imbalance might
enhance predictive performance. We made a subset with an
equalised number of participants with and without severe PH in
the merged dataset and re-evaluated the predictive perfor-
mance of our models (Fig. S5). Nevertheless, this did not
improve performance compared with the unbalanced dataset
ary 2023. vol. 78 j 390–400
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Fig. 2. Selection of features for machine learning models and CV on the internal cohort. (A) Parameters with the highest positive and negative Spearman cor-
relation coefficients with HVPG are shown. (B) Among 52 clinically established laboratory parameters, a final number of three (for the 3P machine learning models) and
five variables (for the 5P models) were selected. (C, D) Performance of the 5P and 3P models to discriminate participants with vs. without clinically significant portal
hypertension (i.e., HVPG >−10 mmHg). For each model, mean AUCs from individual CVs are shown and mean AUC across all CVs is reported. (E, F) Performance of the
5P and 3P models to discriminate individuals with vs. without HVPG >−16 mmHg. (G) The performance of 3P and 5P models, compared to liver stiffness measurement in
the internal cohort. The AUC is reported across 4-fold CVs. 3P, 3 parameter; 5P, 5 parameter; aPTT, activated partial thromboplastin time; BILI, serum bilirubin; CHE,
cholinesterase; CVs, cross-validations; GGT, gamma-glutamyltransferase; HVPG, hepatic venous pressure gradient; INR, international normalised ratio; LSM, liver
stiffness measurement; MELD, model for end-stage liver disease; MLP, multilayer perceptron; PLT, platelet count; SVM, support vector machine.
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(Fig. 3D-E). As such, we do not consider balancing datasets an
essential data pre-processing step for developing MLMs to
predict severe PH in individuals with cACLD.
The formula for prediction of severe PH with LR

Based on coefficients of the 3P LR MLM, the formula for pre-
diction of severe PH for the final 3P model is:

HVPGprobability ¼rðb0 + b1 × platelet count + b2 × serum bilirubin

+ b3 × INRÞ

For the 5P model:

HVPGprobability ¼rðb0 + b1 × platelet count + b2 × serum bilirubin

+ b3 × aPTT+b4 ×CHE+b5 ×GGTÞ

where r is a sigmoid function calculated as pðxÞ ¼ 1
1+e− x, e = Euler’s
Journal of Hepatology, Febru
number, platelet count units are 109/L, serum bilirubin units are mg/
dl, aPTT units are seconds, GGT is in U/L, and CHE is provided in
kU/L.

The extracted coefficients bn both for HVPG >−10 and
>−16 mmHg predictions are available in the supplementary
materials (Table S5). Using them, we developed an
online probability calculation tool (available for both
HVPG thresholds).26

Youden’s J statistic defined the optimal cut-off point for the
final 3P model as 0.332 (HVPG >−16 mmHg) and 0.663 (HVPG
>−10 mmHg) (Table S6).

Discussion
In this study, an array of laboratory and instrumental records of
163 individuals with cACLD from the Vienna cohort were initially
analysed to identify the most robust parameters for predicting
HVPG 16 mmHg, to develop MLMs and to validate them on
external cACLD datasets.
ary 2023. vol. 78 j 390–400 395



Table 2. Performance of the internally trained machine learning models for the assessment of portal hypertension severity in the different single cohorts.

Model

Datasets

Vienna Antwerp
Barcelona -

Hospital Clinic
Barcelona -

Hospital Sant Pau Frankfurt Madrid Modena Paris

Performance of the 5P models (PLT, BILI, aPTT, CHE, GGT) trained on the Vienna cohort for prediction of HVPG >−10 mmHg

Logistic regression 0.843 0.269 0.691
MLP 0.997 0.321 0.647
Random forest 1.000 0.256 0.679
SVM 0.795 0.474 0.675
XGBoost 1.000 0.218 0.599

Performance of the 3P models (PLT, BILI, INR) trained on the Vienna cohort for prediction of HVPG >−10 mmHg

Logistic regression 0.794 0.441 0.743 0.838 0.618 0.859 0.696 0.807
MLP 0.307 0.375 0.338 0.204 0.457 0.204 0.394 0.340
Random forest 1.000 0.521 0.729 0.800 0.618 0.842 0.668 0.779
SVM 0.740 0.560 0.698 0.785 0.554 0.845 0.653 0.740
XGBoost 1.000 0.476 0.744 0.743 0.575 0.808 0.681 0.792

Performance of the 5P models (PLT, BILI, aPTT, CHE, GGT) trained on the Vienna cohort for prediction of HVPG >−16 mmHg

Logistic regression 0.902 0.521 0.690
MLP 0.813 0.500 0.693
Random forest 1.000 0.438 0.694
SVM 0.812 0.500 0.673
XGBoost 1.000 0.438 0.644

Performance of the 3P models (PLT, BILI, INR) trained on the Vienna cohort for prediction of HVPG >−16 mmHg

Logistic regression 0.824 0.535 0.683 0.599 0.637 0.881 0.686 0.720
MLP 0.790 0.640 0.677 0.576 0.583 0.867 0.668 0.689
Random forest 1.000 0.597 0.593 0.592 0.681 0.835 0.670 0.763
SVM 0.783 0.701 0.674 0.543 0.548 0.853 0.653 0.658
XGBoost 1.000 0.610 0.561 0.554 0.632 0.808 0.663 0.741

The machine learning models’ performance is reported as mean AUC values from 100 cross-validations in the single cohorts. Bold values highlight the best performing model in a
specific dataset.
3P, 3 parameter; 5P, 5 parameter; aPTT, activated partial thromboplastin time; BILI, serum bilirubin; CHE, cholinesterase; GGT, gamma-glutamyltransferase; HVPG, hepatic venous
pressure gradient; INR, international normalised ratio; LSM, liver stiffness measurement; MLP, multilayer perceptron; PLT, platelet count; SVM, support vector machine.

Assessment of portal hypertension severity
Our key finding is that MLMs trained on three (PLT, BILI, and
INR) and five (aPTT instead of INR, and the addition of
cholinesterase and GGT) routine laboratory parameters,
following a train-validation split on the internal cohort, accu-
rately predict CSPH and HVPG 16 mmHg. These MLMs enable
the identification of individuals with cACLD who are at high risk
of hepatic decompensation independently of liver dis-
ease aetiology.

We developed and employed models for binary classifica-
tion and regression prediction tasks. Notably, 5P and 3P MLMs
performed even better than those using all available parame-
ters, which further facilitates their wide applicability (Fig. S2).

For severe PH, the best 5P MLM, based on LR, included
PLT, BILI, aPTT, cholinesterase, GGT, and resulted in a mean
AUC of 0.887 in CV in the Vienna cohort. The internally trained
5P MLMs performed reasonably in the Modena dataset with an
AUC of 0.694 but less well in the Antwerp dataset (AUC =
0.521). Unfortunately, cholinesterase is not a routine parameter
in other centres; hence, the validation dataset size for the 5P
MLMs was limited. When trained on merged records, the 5P
MLMs yielded AUCs ranging from 0.899 to 0.542. For predic-
tion of CSPH, the internally trained models performed worse in
the Antwerp dataset (AUC = 0.449) and moderately in the
Modena (AUC = 0.694) and merged validation data-
sets (Table 3).

The best 3P MLMs included PLT, BILI, and INR. LR of the
internally trained 3P model using CV on the Vienna dataset
yielded an AUC of 0.813. Depending on the dataset, external
validation produced heterogeneous yields. Predictive perfor-
mance in the Madrid dataset exceeded that in the internal
396 Journal of Hepatology, Febru
cohort (Table 2). LR showed the best performance among
models in the merged cohort with the 3P set (AUC = 0.735).

Using the extracted coefficients of the discussed MLMs,
we developed an online calculator that can be readily used for
risk estimation in the clinical management of individuals
with cACLD.26

To the best of our knowledge, there are no published studies
on the prediction of severe PH using machine learning tech-
niques that rely solely on laboratory parameters. Previously, an
MLM was described for the non-invasive diagnosis of oeso-
phageal varices in individuals with compensated cirrhosis.27

This approach employed RF with widely available laboratory
parameters, including PLT, BILI and INR, with demographic
data, aetiology, and presence of complications. In the valida-
tion sets, the AUC ranged between 0.75 and 0.82. While this is
an example of a non-invasive assessment of ACLD complica-
tions with predictive capability comparable to what we observe
in some datasets, this approach cannot be directly translated to
HVPG prediction. Utilising a decompensation event as a feature
would introduce an association bias, as PH is one of the pri-
mary drivers of such events.

The reported performance of 5P in the internal Vienna
cohort and 3P in the Madrid dataset closely aligns with the
predictive capability of the previously reported neural network
method based on histological readouts for CSPH (i.e., HVPG
10 mmHg) prediction (AUC of 0.85 on the training set, 0.76 on
the test set).14 Remarkably, combining the morphological
parameters with serum markers, including ELF, led to only a
minor improvement in MLM prediction in that external study.
In another study with 107 participants, multiple methods
ary 2023. vol. 78 j 390–400



LR
(0.735)

MLP
(0.726)

Random
forest

(0.707)

SVM
(0.693)

XGBoost
(0.703)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

s 
(1

00
 C

Vs
)

HVPG16, 3P, merged cohort (n = 1,204)

LR
(0.812)

MLP
(0.730)

Random
forest

(0.776)

SVM
(0.726)

XGBoost
(0.734)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

s 
(1

00
 C

Vs
)

HVPG16, 5P, merged cohort (n = 258)

LR
(0.773)

MLP
(0.762)

Random
forest

(0.736)

SVM
(0.712)

XGBoost
(0.716)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

s 
(1

00
 C

Vs
)

HVPG10, 3P, merged cohort (n = 1,204)

LR
(0.754)

MLP
(0.681)

Random
forest

(0.711)

SVM
(0.724)

XGBoost
(0.675)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

s 
(1

00
 C

Vs
)

HVPG10, 5P, merged cohort (n = 258)
A B

D E
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

HVPG10, merged cohort (n = 796)
3P, fold 1 (0.807)
3P, fold 2 (0.770)
3P, fold 3 (0.833)
3P, fold 4 (0.805)

C

3P, mean (0.805)

LSM, fold 1 (0.782)
LSM, fold 2 (0.796)
LSM, fold 3 (0.809)
LSM, fold 4 (0.800)
LSM, mean (0.798)

3P + LSM, fold 1 (0.843)
3P + LSM, fold 2 (0.837)
3P + LSM, fold 3 (0.888)
3P + LSM, fold 4 (0.860)
3P + LSM, mean (0.859)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

HVPG16, merged cohort (n = 796)
3P, fold 1 (0.793)
3P, fold 2 (0.750)
3P, fold 3 (0.764)
3P, fold 4 (0.799)
3P, mean (0.776)

LSM, fold 1 (0.840)
LSM, fold 2 (0.774)
LSM, fold 3 (0.744)
LSM, fold 4 (0.756)
LSM, mean (0.778)

3P + LSM, fold 1 (0.893)
3P + LSM, fold 2 (0.801)
3P + LSM, fold 3 (0.791)
3P + LSM, fold 4 (0.847)
3P + LSM, mean (0.833)

F

Fig. 3. Performance of the machine learning models to predict HVPG >−10 mmHg and HVPG >−16 mmHg in the merged cohort. (A, B) Performance of 5P and 3P
models to discriminate individuals with vs. without clinically significant portal hypertension (i.e., HVPG >−10 mmHg). (D, E) Performance of 5P and 3P to discriminate
individuals with vs. without HVPG >−16 mmHg. For each model, mean AUCs from individual CVs are shown as dots, and the mean AUC across all 100 CVs is reported.
(C, F) Performance of 3P and 5P models compared to liver stiffness measurement for HVPG >−10 mmHg and HVPG >−16 mmHg thresholds in the merged cohort, single
CV. The AUC is reported across 4-fold CVs. 3P, 3 parameter; 5P, 5 parameter; CSPH, clinically significant portal hypertension; CVs, cross-validations; HVPG, hepatic
venous pressure gradient, LSM, liver stiffness measurement; MLP, multilayer perceptron; SVM, support vector machine.
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were employed to identify those with CSPH.28 Despite the
lack of an external validation cohort and a limited number of
participants for MLM training, LR, RF, and MLP were the
best performing models, consistent with our findings. We
also conclude that MLMs, particularly LR, RF, and MLP in
both 5P and 3P settings, are useful clinical tools for
HVPG prediction.
Table 3. Performance of the machine learning models, trained on the merged
single cohorts.

Model Vienna Antwerp
Barcelona -

Hospital Clinic

Performance of the final 5P model (PLT, BILI, aPTT, CHE, GGT) trained on th
Logistic regression 0.839 0.449

Performance of the final 5P model (PLT, BILI, aPTT, CHE, GGT) trained on th
Logistic regression 0.899 0.542

Performance of the final 3P model (PLT, BILI, INR) trained on the merged coh
Logistic regression 0.802 0.451 0.739

Performance of the final 3P model (PLT, BILI, INR) trained on the merged coh
Logistic regression 0.822 0.589 0.686

The performance of different machine learning models for the prediction of HVPG >−16 mm
3P, 3 parameter; 5P, 5 parameter; aPTT, activated partial thromboplastin time; BILI, serum
pressure gradient; INR, international normalised ratio; LSM, liver stiffness measurement; P

Journal of Hepatology, Febru
We evaluated whether our chosen features outperform LSM
alone for detecting PH. In the merged cohort, 3P and 5P per-
formance was similar to LSM (Table 4). Combining laboratory-
based prediction with LSM can further improve predictive
performance, with AUCs reaching 0.858 for CSPH using
3P+LSM and 0.901 for HVPG 16 mmHg using 5P+LSM. These
results are superior to either LSM or MLMs alone (Table 4).
cohort, for the assessment of portal hypertension severity in the different

Datasets

Barcelona -
Hospital Sant Pau Frankfurt Madrid Modena Paris

e merged cohort for prediction of HVPG >− 10 mmHg
0.725

e merged cohort for prediction of HVPG >− 16 mmHg
0.695

ort for prediction of HVPG >− 10 mmHg
0.856 0.629 0.873 0.721 0.796

ort for prediction of HVPG >− 16 mmHg
0.629 0.647 0.887 0.688 0.727

Hg is reported as mean AUC values from 100 cross-validations in the single cohorts.
bilirubin; CHE, cholinesterase; GGT, gamma-glutamyltransferase; HVPG, hepatic venous
LT, platelet count.
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Table 4. Performance of the final logistic regression models on the merged cohort.

Model Parameters Participants with all
parameters available

AUC HVPG
>−10 mmHg

AUC HVPG
>−16 mmHg

r2 score

5P PLT, BILI, aPTT, CHE, GGT 258 0.789 0.828 0.291
3P PLT, BILI, INR 1,204 0.775 0.737 0.215
5P + LSM PLT, BILI, aPTT, CHE, GGT, LSM 208 0.832 0.901 0.480
3P + LSM PLT, BILI, INR, LSM 796 0.858 0.835 0.431
LSM-only LSM 804 0.799 0.778 0.282

Comparison of machine learning models for the prediction of HVPG >−10 and >−16 mmHg.
3P, 3 parameter; 5P, 5 parameter; aPTT, activated partial thromboplastin time; BILI, serum bilirubin; CHE, cholinesterase; GGT, gamma-glutamyltransferase; HVPG, hepatic venous
pressure gradient; INR, international normalised ratio; LSM, liver stiffness measurement; PLT, platelet count.

Assessment of portal hypertension severity
However, we did not focus on LSM by design since it requires
specialised equipment and training that may not be available in
a common scenario.

Since our approach is aetiology-agnostic, the different
proportions of liver disease aetiologies in the merged cohort
could explain the heterogeneity in model performance on a
single-dataset resolution (Fig. 1C). Surprisingly, we found that
the 3P model worked best in the NAFLD subset for both HVPG
thresholds (n = 286, AUC up to 0.836) (Table S4). MLMs per-
formed worse in individuals with cholestasis (n = 63, AUC up to
0.666); however, given the low number of individuals with a
cholestatic aetiology (5.2% of the merged cohort) and their
distinct but variable component of presinusoidal PH, it would
require a dedicated follow-up study to assess HVPG prediction
models in these patients. Importantly, liver disease activity
contributed to MLM performance, with inactive disease
(abstinent ALD, suppressed viral hepatitis) resulting in better
prediction. The performance scores, nevertheless, were com-
parable. To conclude, our machine learning approach can still
be applied to individuals with various liver disease aetiologies
(e.g., ALD, viral, NAFLD) and with distinct liver disease activity.
Furthermore, well-designed and sufficiently powered datasets
would likely enable the adoption of our MLMs for cholestasis
and rare liver diseases.

Our study has limitations. First, the patient datasets within
the validation cohort were heterogeneous. To address this,
the patient records from all datasets were aggregated as a
398 Journal of Hepatology, Febru
merged dataset and used in CV, producing less prediction
dispersion. Second, our study inclusion criteria comprised
HVPG >−6 mmHg, while, in a clinical setting, non-invasive as-
sessments of PH could be indicated in individuals with lower
HVPG values. Third, the reported performance may not reflect
certain underrepresented aetiologies, such as cholestatic and
rare liver diseases. Finally, we utilised LR within the RFE al-
gorithm to find suitable features for MLMs, explaining why LR-
based models performed better than other models – although
not in all scenarios; however, the application of LR allowed us
to extract coefficients and develop a simple risk predic-
tion tool.

In conclusion, the presented 5P and 3P MLMs have prom-
ising clinical utility for the non-invasive prediction of HVPG
>−10 mmHg and HVPG >−16 mmHg in individuals with cACLD.
This approach could be used clinically to prioritise treatments
aimed at preventing decompensation and for the selection of
participants for clinical trials. We still consider invasive mea-
surement of HVPG necessary for the reliable identification of
individuals with cACLD and severe PH, and for the assessment
of response to aetiological or PH-lowering treatments. The
performance of our 5P and 3P MLMs for the prediction of
CSPH and severe PH will be validated in larger cohorts by
assessing decompensating events during long-term follow-up.
Currently, our online risk calculator based on widely available
laboratory parameters can help clinicians to assess the risk of
CSPH or severe PH in their patients.26
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