4 research outputs found
Advanced Virgo Plus. Future perspectives
While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector’s reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli
A state observer for the Virgo inverted pendulum
International audienceWe report an application of Kalman filtering to the inverted pendulum (IP) of the Virgo gravitational wave interferometer. Using subspace method system identification techniques, we calculated a linear mechanical model of Virgo IP from experimental transfer functions. We then developed a Kalman filter, based on the obtained state space representation, that estimates from open loop time domain data, the state variables of the system. This allows the observation (and eventually control) of every resonance mode of the IP mechanical structure independently
Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data
In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.by Anand Sengupta et al
Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory
The Advanced LIGO and Advanced Virgo observatories recently discovered
gravitational waves from a binary neutron star inspiral. A short gamma-ray
burst (GRB) that followed the merger of this binary was also recorded by the
Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anticoincidence Shield for
the Spectrometer for the International Gamma-Ray Astrophysics Laboratory
(INTEGRAL), indicating particle acceleration by the source. The precise
location of the event was determined by optical detections of emission
following the merger. We searched for high-energy neutrinos from the merger in
the GeV--EeV energy range using the ANTARES, IceCube, and Pierre Auger
Observatories. No neutrinos directionally coincident with the source were
detected within s around the merger time. Additionally, no MeV
neutrino burst signal was detected coincident with the merger. We further
carried out an extended search in the direction of the source for high-energy
neutrinos within the 14-day period following the merger, but found no evidence
of emission. We used these results to probe dissipation mechanisms in
relativistic outflows driven by the binary neutron star merger. The
non-detection is consistent with model predictions of short GRBs observed at a
large off-axis angle.Comment: 22 pages, 2 figure
