471 research outputs found

    Bifurcation Analysis of a Two-Compartment Hippocampal Pyramidal Cell Model

    Get PDF
    The Pinsky-Rinzel model is a non-smooth 2-compartmental CA3 pyramidal cell model that has been used widely within the field of neuroscience. Here we propose a modified (smooth) system that captures the qualitative behaviour of the original model, while allowing the use of available, numerical continuation methods to perform full-system bifurcation and fastslow analysis. We study the bifurcation structure of the full system as a function of the applied current and the maximal calcium conductance. We identify the bifurcations that shape the transitions between resting, bursting and spiking behaviours, and which lead to the disappearance of bursting when the calcium conductance is reduced. Insights gained from this analysis, are then used to firstly illustrate how the irregular spiking activity found between bursting and stable spiking states, can be influenced by phase differences in the calcium and dendritic voltage, which lead to corresponding changes in the calcium-sensitive potassium current. Furthermore, we use fast-slow analysis to investigate the mechanisms of bursting and show that bursting in the model is dependent on the intermediately slow variable, calcium, while the other slow variable, the activation gate of the afterhyperpolarisation current, does not contribute to setting the intraburst dynamics but participates in setting the interburst interval. Finally, we discuss how some of the described bifurcations affect spiking behaviour, during sharp-wave ripples, in a larger network of Pinsky-Rinzel cells.LAA is supported by the Engineering and Physical Sciences Research Council (EPSRC) and Eli Lilly & Company; LYP is supported by the Wellcome Trust; and KT-A is supported by grant EP/N014391/1 of the EPSRC

    Separable actions of acetylcholine and noradrenaline on neuronal ensemble formation in hippocampal CA3 circuits

    Get PDF
    In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory–Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage

    Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271.

    Get PDF
    The question of whether tumorigenic cancer stem cells exist in human melanomas has arisen in the last few years. Here we show that in melanomas, tumour stem cells (MTSCs, for melanoma tumour stem cells) can be isolated prospectively as a highly enriched CD271(+) MTSC population using a process that maximizes viable cell transplantation. The tumours sampled in this study were taken from a broad spectrum of sites and stages. High-viability cells isolated by fluorescence-activated cell sorting and re-suspended in a matrigel vehicle were implanted into T-, B- and natural-killer-deficient Rag2(-/-)gammac(-/-) mice. The CD271(+) subset of cells was the tumour-initiating population in 90% (nine out of ten) of melanomas tested. Transplantation of isolated CD271(+) melanoma cells into engrafted human skin or bone in Rag2(-/-)gammac(-/-) mice resulted in melanoma; however, melanoma did not develop after transplantation of isolated CD271(-) cells. We also show that in mice, tumours derived from transplanted human CD271(+) melanoma cells were capable of metastatsis in vivo. CD271(+) melanoma cells lacked expression of TYR, MART1 and MAGE in 86%, 69% and 68% of melanoma patients, respectively, which helps to explain why T-cell therapies directed at these antigens usually result in only temporary tumour shrinkage

    Mobile Messaging Support Versus Usual Care for People With Type 2 Diabetes on Glycemic Control: Protocol for a Multicenter Randomized Controlled Trial.

    Get PDF
    BACKGROUND: Health outcomes for people treated for type 2 diabetes could be substantially improved in sub-Saharan Africa. Failure to take medicine regularly to treat diabetes has been identified as a major problem. Resources to identify and support patients who are not making the best use of medicine in low- and middle-income settings are scarce. Mobile phones are widely available in these settings, including among people with diabetes; linked technologies, such as short message service (SMS) text messaging, have shown promise in delivering low-cost interventions efficiently. However, evidence showing that these interventions will work when carried out at a larger scale and measuring the extent to which they will improve health outcomes when added to usual care is limited. OBJECTIVE: The objective of this trial is to test the effectiveness of sending brief, automated SMS text messages for improving health outcomes and medication adherence in patients with type 2 diabetes compared to an active control. METHODS: We will carry out a randomized trial recruiting from clinics in two contrasting settings in sub-Saharan Africa: Cape Town, South Africa, and Lilongwe, Malawi. Intervention messages will advise people about the benefits of their diabetes treatment and offer motivation and encouragement around lifestyle and use of medication. We allocated patients, using randomization with a minimization algorithm, to receive either three to four intervention messages per week or non-health-related messages every 6 weeks. We will follow up with participants for 12 months, measuring important risk factors for poor health outcomes and complications in diabetes. This will enable us to estimate potential health benefits, including the primary outcome of hemoglobin A1c (HbA1c) levels as a marker for long-term blood glucose control and a secondary outcome of blood pressure control. We will record the costs of performing these activities and estimate cost-effectiveness. We will also use process evaluation to capture the collection of medication and assess the reception of the intervention by participants and health care workers. RESULTS: Recruitment to the trial began in September 2016 and follow-up of participants was completed in October 2018. Data collection from electronic health records and other routinely collected sources is continuing. The database lock is anticipated in June 2019, followed by analysis and disclosing of group allocation. CONCLUSIONS: The knowledge gained from this study will have wide applications and advance the evidence base for effectiveness of mobile phone-based, brief text messaging on clinical outcomes and in large-scale, operational settings. It will provide evidence for cost-effectiveness and acceptability that will further inform policy development and decision making. We will work with a wide network that includes patients, clinicians, academics, industry, and policy makers to help us identify opportunities for informing people about the work and raise awareness of what is being developed and studied. TRIAL REGISTRATION: ISRCTN Registry ISRCTN70768808; http://www.isrctn.com/ISRCTN70768808 (Archived by WebCite at http://www.webcitation.org/786316Zqk). INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/12377

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    CD44 Expression in Oro-Pharyngeal Carcinoma Tissues and Cell Lines

    Get PDF
    Expression of CD44, a transmembrane hyaluronan-binding glycoprotein, is variably considered to have prognostic significance for different cancers, including oral squamous cell carcinoma. Although unclear at present, tissue-specific expression of particular isoforms of CD44 might underlie the different outcomes in currently available studies. We mined public transcriptomics databases for gene expression data on CD44, and analyzed normal, immortalized and tumour-derived human cell lines for splice variants of CD44 at both the transcript and protein levels. Bioinformatics readouts, from a total of more than 15,000 analyses, implied an increased CD44 expression in head and neck cancer, including increased expression levels relative to many normal and tumor tissue types. Also, meta-analysis of over 260 cell lines and over 4,000 tissue specimens of diverse origins indicated lower CD44 expression levels in cell lines compared to tissue. With minor exceptions, reverse transcribed polymerase chain reaction identified expression of the four main isoforms of CD44 in normal oral keratinocytes, transformed lines termed DT and HaCaT, and a series of paired primary and metastasis-derived cell lines from oral or pharyngeal carcinomas termed HN4/HN12, HN22/HN8 and HN30/HN31. Immunocytochemistry, Western blotting and flow cytometric assessments all confirmed the isoform expression pattern at the protein level. Overall, bioinformatic processing of large numbers of global gene expression analyses demonstrated elevated CD44 expression in head and neck cancer relative to other cancer types, and that the application of standard cell culture protocols might decrease CD44 expression. Additionally, the results show that the many variant CD44 exons are not fundamentally deregulated in a diverse range of cultured normal and transformed keratinocyte lines

    Monitoring of microbial hydrocarbon remediation in the soil

    Get PDF
    Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon-degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation, thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities, respectively. Provided the polluted soil has requisite values for environmental factors that influence microbial activities and there are no inhibitors of microbial metabolism, there is a good chance that there will be a viable and active population of hydrocarbon-utilizing microorganisms in the soil. Microbial methods for monitoring bioremediation of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe and permissible level has been achieved. Enumeration and characterization of hydrocarbon degraders, use of micro titer plate-based most probable number technique, community level physiological profiling, phospholipid fatty acid analysis, 16S rRNA- and other nucleic acid-based molecular fingerprinting techniques, metagenomics, microarray analysis, respirometry and gas chromatography are some of the methods employed in bio-monitoring of hydrocarbon remediation as presented in this review

    Raman spectroscopy: techniques and applications in the life sciences

    Get PDF
    Raman spectroscopy is an increasingly popular technique in many areas including biology and medicine. It is based on Raman scattering, a phenomenon in which incident photons lose or gain energy via interactions with vibrating molecules in a sample. These energy shifts can be used to obtain information regarding molecular composition of the sample with very high accuracy. Applications of Raman spectroscopy in the life sciences have included quantification of biomolecules, hyperspectral molecular imaging of cells and tissue, medical diagnosis, and others. This review briefly presents the physical origin of Raman scattering explaining the key classical and quantum mechanical concepts. Variations of the Raman effect will also be considered, including resonance, coherent, and enhanced Raman scattering. We discuss the molecular origins of prominent bands often found in the Raman spectra of biological samples. Finally, we examine several variations of Raman spectroscopy techniques in practice, looking at their applications, strengths, and challenges. This review is intended to be a starting resource for scientists new to Raman spectroscopy, providing theoretical background and practical examples as the foundation for further study and exploration

    A many-analysts approach to the relation between religiosity and well-being

    Get PDF
    The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N=10,535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported β=0.120). For the second research question, this was the case for 65% of the teams (median reported β=0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates
    corecore