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Abstract The Pinsky-Rinzel model is a non-smooth

2-compartmental CA3 pyramidal cell model that has

been used widely within the field of neuroscience. Here

we propose a modified (smooth) system that captures

the qualitative behaviour of the original model, while

allowing the use of available, numerical continuation

methods to perform full-system bifurcation and fast-

slow analysis. We study the bifurcation structure of the

full system as a function of the applied current and

the maximal calcium conductance. We identify the bi-

furcations that shape the transitions between resting,

bursting and spiking behaviours, and which lead to the

disappearance of bursting when the calcium conduc-

tance is reduced. Insights gained from this analysis, are

then used to firstly illustrate how the irregular spik-

ing activity found between bursting and stable spiking
states, can be influenced by phase differences in the cal-

cium and dendritic voltage, which lead to correspond-

ing changes in the calcium-sensitive potassium current.

Furthermore, we use fast-slow analysis to investigate
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the mechanisms of bursting and show that bursting in

the model is dependent on the intermediately slow vari-

able, calcium, while the other slow variable, the acti-

vation gate of the afterhyperpolarisation current, does

not contribute to setting the intraburst dynamics but

participates in setting the interburst interval. Finally,

we discuss how some of the described bifurcations af-

fect spiking behaviour, during sharp-wave ripples, in a

larger network of Pinsky-Rinzel cells.
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1 Introduction

An extensive body of literature has implicated the hip-

pocampal formation in spatial navigation and episodic

memory [51,10,45,54,60]. Within the hippocampus, the

recurrent connectivity within the autoassociative CA3

network on the one hand confers onto the region a

strong computational capacity which can mediate be-

havioural processes such as pattern completion [40,56,

47] while on the other hand predisposes the region to

epileptiform activity [67,43,35]. At the cellular level,

CA3 pyramidal cells intrinsically display a variety of

firing patterns, ranging from single action potentials

to complex bursts [32,68,44,72,73,59]. Such bursting is

important for place cell activity [25,18,5], signal prop-

agation and the induction of synaptic plasticity [37,9].

In an attempt to understand the behaviour of iso-

lated cells and the coupled CA3 network, numerous

computational models of CA3 pyramidal cells have been

proposed, ranging from detailed, multi-compartmental

models down to single compartmental models [68,53,
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42,23,74,49]. The Pinsky-Rinzel model [53] was origi-

nally formulated over 20 years ago as a two-compartment

reduction of the 19-compartment Traub CA3 cell model,

developed earlier [68]. Since then variants of Pinsky-

Rinzel model have been used to investigate hippocam-

pal sharp wave ripple oscillations [65]; carbachol-induced

gamma oscillations [66]; rate and temporal coding of

place cells [31,6]; and the influence of dendritic mor-

phology on firing patterns [39], to name but a few ex-

amples.

Whilst parameter regimes for tonic spiking and burst-

ing activity were investigated in the original Pinsky-

Rinzel paper [53], a detailed mathematical analysis of

the dynamical regimes of the model has only ever been

performed once [24]. This is likely because the Pinsky-

Rinzel model is non-smooth, and so traditional tech-

niques used to study dynamical systems cannot be em-

ployed. In this previous paper, bifurcation analysis [62]

was used to investigate the transitions between rest-

ing, bursting and spiking states as the size of the ex-

tracellular potassium concentration was increased [24].

However, a detailed description of how this analysis was

performed, given the non-smooth nature of the system,

was never provided. Due to the complexity of the model,

a great deal of extra insight can be gained by analysing

how some of the many other parameters shape the dy-

namical landscape of the model. This can then inform

parameter choices and potentially explain dynamic be-

haviour in larger networks of Pinsky-Rinzel cells, such

as [65], which are much more difficult to analyse.

Therefore we recast the original model equations us-

ing fully continuous functions. This permitted the use

of available numerical continuation methods to perform
bifurcation analysis using three notable bifurcation pa-

rameters: the applied somatic and dendritic currents,

and the maximum calcium conductance. These first two

parameters were chosen in order to ask what the math-

ematical mechanisms were for the originally observed

transitions between resting, bursting and spiking as the

applied current was increased [53]. This is of particu-

lar interest for Pinsky-Rinzel cell behaviour in a larger

network, where excitatory and inhibitory inputs may

impinge onto either the somatic or dendritic compart-

ment, or both. Would the mechanisms behind the tran-

sitions be qualitatively similar from current applied to

either compartment? Or would the mechanisms differ?

Having understood these transitions, the third bifurca-

tion parameter was chosen because lowering the max-

imum calcium conductance can switch behaviour from

bursting to spiking [53,68], as has been used to better

represent the firing properties of CA1 cells [65]. How

does this occur from dynamical systems point of view?

Is it just the bursting that disappears, or do other be-

haviours also change as the calcium conductance is re-

duced, and if so how might calcium be involved in shap-

ing some of these behaviours? As an example of how an-

swers to the above questions could be used in informing

understanding of network activity, we then discuss the

implications for some of the bifurcations identified, in

relation to a larger network of Pinsky-Rinzel cells, ex-

hibiting sharp-wave ripple oscillations [65].

Finally, given the relationship between the maxi-

mum calcium conductance and bursting, fast slow anal-

ysis [55] was used to further investigate the intraburst

dynamics. Traditionally this has been used to isolate

computationally the important variables, responsible

for bursting, given the difficulty of teasing apart the sys-

tem experimentally. When this technique was applied

to two separate pyramidal cell models based on, but

slightly different to, the Pinsky-Rinzel model; bursting

behaviour was either of the square-wave/fold-homoclinic

type and dependent on the activation variable of the

slow potassium current [34] or of the parabolic type

and dependent on both the slow autocatalytic activa-

tion variable for a T-type calcium channel and the ac-

tivation variable for the slow calcium-dependent potas-

sium current [74]. Given these differences, it is difficult

to interpolate which mechanism of bursting might exist

in the original model, for which fast-slow analysis has

never been performed. Moreover, while in the original

paper, the authors describe burst initiation as occurring

when the slow activation variable, (q), for the potas-

sium afterhyperpolarisation current fell below a thresh-

old value [53]; subsequent studies have shown instead,

using phase-plane analysis on a piecewise reduced sys-

tem of the original model, that although q is impor-

tant for controlling the interburst interval, it is not im-

portant for setting the burst initiation threshold [6,7].

Therefore we perform fast-slow analysis, using the mod-

ified continuous version of the Pinsky-Rinzel model we

propose here, in an attempt to clarify the role of q and

also investigate its interaction with the other slow vari-

able, calcium (Ca ), in controlling the burst dynamics.

2 Model

The Pinsky-Rinzel model characterises a typical pyra-

midal cell as comprising a single axosomatic and a sin-

gle dendritic compartment, where the somatic compart-

ment contains a transient sodium INa, delayed rectifier

potassium IKDR
, and leak current. The dendritic com-

partment contains a persistent calcium ICa, calcium ac-

tivated potassium IKCa
, after-hyperpolarisation potas-

sium current IKAHP
, and leak current. The two compart-

ments are coupled by a coupling current ISD or IDS and
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their membrane voltages summarised by the following

differential equations:

Cm
dVs
dt

=− ILeak − INa − IKDR −
IDS

p
+
ISapp

p

Cm
dVd
dt

=− ILeak − ICa − IKCa
− IKAHP

+

+
ISD

(1− p)
+

IDapp

(1− p)
,

that evolve in time (measured in milliseconds).

All currents are conductance-based, using the Hodgkin-

Huxley formalism [27] of activation and inactivation

gates m,h, n, s, c, q dependent on voltage or intracel-

lular calcium that drive the current. Additionally, IKCA

has a saturation function dependent on calcium χ(Ca).

INa = gNa m
2
∞(Vs) h (Vs − VNa)

IKDR
= gKDR

n (Vs − VK)

ICa = gCa s
2 (Vd − VCa)

IKCa = gKCa c χ(Ca) (Vd − VK)

IKAHP = gKAHP q (Vd − VK)

ISD = −IDS = gC (Vd − Vs)
ILeak = gL (V − VL)

Maximal conductance parameters were taken (in µ

S/cm2) as gNa = 30, gKDR = 15, gKCa = 15, gKAHP =

0.8, gCa = 10, gL = 0.1 and gC = 2.1, while reversal

potentials were taken (in mV) as VNa = 60, VK = −75,

VCa = 80, and VL = −60. The size of the axosomatic

compartment as a proportion of the entire cell was given

by p = 0.5 and that of the dendritic compartment as

1− p. The activation and inactivation gates evolve as a

function of their steady state activation x∞, and time

constant τx curves, where U represents the membrane

potentials Vs or Vd, or the intracellular calcium Ca.

dx

dt
=
x∞(U)− x
τx(U)

x∞ and τx are often expressed in terms of forward and

backward rate functions α and β.

x∞(U) =
αx(U)

αx(U) + βx(U)

τx(U) =
1

αx(U) + βx(U)
.

In the original formulation, the m, h, n, and s vari-

ables are driven solely by continuous rate functions,

whereas the c, q, and χ are given as discontinuous rate

functions, where H() is the Heaviside step function,

αm(Vs) = 0.32(−46.9−Vs)
(exp((−46.9−Vs)/4)−1)

βm(Vs) = 0.28(Vs+19.9)
(exp((Vs+19.9)/5)−1)

αn(Vs) = 0.016(−24.9−Vs)
(exp((−24.9−Vs)/5)−1)

βn(Vs) = 0.25 exp(−1− 0.025Vs)

αh(Vs) = 0.128 exp( (−43−Vs)
18 )

βh(Vs) = 4
(1+exp((−20−Vs)/5))

αs(Vd) = 1.6
(1+exp(−0.072(Vd−5)))

βs(Vd) = 0.02(Vd+8.9)
(exp((Vd+8.9)/5)−1)

αc(Vd) = (1−H(Vd+10)) exp((Vd+50)/11−(Vd+53.5)/27)
18.975 +

+H(Vd + 10) (2 exp( (−53.5−Vd)
27 ))

βc(Vd) = (1−H(Vd + 10))(2 exp( (−53.5−Vd)
27 )− αc(Vd))

αq(Ca) = min(0.00002 Ca, 0.01)

βq(Ca) = 0.001

χ(Ca) = min( Ca
250 , 1)

To allow us to perform bifurcation analysis, we ap-

proximated the discontinuous functions by fitting con-

tinuous functions directly to the steady state and time

activation curves. A comparison of the original and

fitted curves are shown in Figure 1, which shows a

small relative error for each fitted curve, of the order

10−2−10−3. To confirm that the approximated system

displayed the same behaviour as the original system,

we reproduced the firing patterns and f/I curve of the

original model (Figure 2). The approximated functions

are as follows,

c∞(Vd) = (1/(1 + exp((−10.1 − Vd)/0.1016)))0.00925,

τc(Vd) = 3.627 exp(0.03704 Vd),

q∞(Ca) = (0.7894 exp(0.0002726 Ca))−
− (0.7292 exp(−0.01672 Ca)),

τq(Ca) = (657.9 exp(−0.02023 Ca)) +

+ (301.8 exp(−0.002381 Ca)),

χ(Ca) = 1.073 sin(0.003453 Ca+ 0.08095) +

+0.08408 sin(0.01634Ca−2.34)+0.01811 sin(0.0348Ca−
0.9918).

Intracellular free calcium in the effective sub-membrane

shell is given as dimensionless, since in the original

model it was reasoned that the size of the effective shell

was undetermined, so appropriate scaling could not be

given. Nevertheless, this evolves according to

dCa

dt
= −0.13ICa − 0.075Ca.

Bifurcation and continuation analysis was conducted

in XPPAUT, a tool for simulating and analysing dy-

namical systems [19]. One- and two-parameter bifur-

cation diagrams were constructed using AUTO within

XPPAUT. For fast-slow analysis, the differential equa-

tions describing Ca and q were independently removed

from the full system of equations and instead Ca and

q were treated as parameters. All Figures were con-

structed in MATLAB. The code for the model simula-

tions is available on ModelDB and could be found here:

https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=189088.
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Fig. 1 Approximation of discontinuous function. Approximated functions (A,C,E) and corresponding error of approximation
(B,D,F) for c∞, (blue) and τc (red) (A-B), q∞ (blue) and τq (red) (C-D), and χ (blue) (E). For the approximated functions,
the original discontinuous functions are plotted in black. Relative error was used for the time constant functions (τc and τq),
where error was computed over a large range of values, while absolute error was used for c∞, q∞ and χ.

3 Results

3.1 Response to steady somatic applied current

In the original paper, as the applied current to the

somatic or dendritic compartment was increased, the

authors saw various qualitative shifts in behaviour be-

tween resting, bursting and spiking [53]. Understand-

ing the dynamic mechanisms behind these transitions

is important because, within a neural network, individ-

ual Pinsky-Rinzel cells do not operate in isolation but

rather there are various factors which might affect the

net current impinging onto the somatic and dendritic

compartments, most notably excitatory and inhibitory

synaptic input and also the presence of neuromodula-

tory factors. Therefore we begin by investigating the

effect of somatically or dendritically applied current on

the dynamical behaviour of the cell using bifurcation

analysis.

The bifurcation diagram using ISapp as the initial bi-

furcation parameter is formed of an S-shaped curve of

steady states and a curve of periodic orbits (Figure 3a).

The lower branch of the S-curve consists of stable nodes

(see Figure 3di, ISapp = −1) which correspond to the

hyperpolarised resting state of the cell. The system is

driven to these nodes predominantly by the potassium-

based ILeak, in accordance with experimental work [4,

26]. Stability is lost via a saddle-node bifurcation (SN1)

at ISapp = 0.02651, which represents the rheobase for

ISapp and gives rise to a branch of saddles, which forms
the middle and part of the upper branches of the S-

curve. This branch of saddles turns around at another

saddle-node bifurcation (SN2) at ISapp = −81.57 before

regaining stability at the supercritical Hopf bifurcation

(HB) for ISapp = 23.69. For increasing ISapp there re-

mains a branch of stable nodes, corresponding to a de-

polarised resting state of around -30mV (see Figure 3di,

ISapp = 25).

A branch of stable periodic solutions emerges from

the HB with low amplitude and high frequency (see

Figure 3dvi, ISapp = 22). These solutions are only ap-

parent in a small range of ISapp since stability is lost for

decreasing ISapp between two torus bifurcations (TR1

at ISapp = 21.14 and TR2 at ISapp = 15.87). Within

this range, an undulating spiking pattern is observed

with increasing and then decreasing spike amplitude

(see Figure 3dv, ISapp = 17). For ISapp below that

at TR2, a second branch of stable periodic solutions

emerges, representing regular spiking activity (see Fig-

ure 3div, ISapp = 3) with greater spike amplitude but
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Fig. 2 Comparison of firing patterns and f/I curves of the original model and our approximated model. A) Vs and Ca in
the original (black and red, respectively) and approximated (blue and magenta, respectively) models for different parameter
regimes as follows: somatic input (ISapp = 0.75), dendritic input (IDapp = −0.5, gNMDA = 1.25), strong somatic input
(ISapp = 2.5), somatic input with tight coupling (ISapp = 2.5, gC = 10.5), and dendritic input with weak coupling (IDapp =
−0.5, gNMDA = 1.25, gC = 1.425). B) f/I curves in the original model (black) or approximated model (red) for the isolated
soma or dendrite (upper panels) and the 2-compartment model with standard gC = 2.1 (middle panels), infinite gC (lower left
panel) and gC = 1.85 (lower right panel) for comparison with the Traub model [68] in blue. Circles indicate burst frequency,
triangles are spike frequency and squares are mixed burst-spike frequency.

lower frequency than the first branch of stable spik-

ing solutions (Figure 3b), as described in the original

model [53]. Such spiking is dominated by the dynam-

ics of INa and IK in the somatic compartment, as well

described by seminal work by Hodgkin & Huxley [27].

The aperiodic and spike doubling behaviour for lower

ISapp (see Figure 3diii , ISapp = 2) is brought about via

the period doubling (PD) bifurcation which occurs at

ISapp = 2.288 and leads to a final branch of unstable

periodic solutions. For further decreasing ISapp, aperi-

odic and spike doubling behaviour transitions to very

low frequency (VLF) bursting as in the original model

(see Figure 3dii). The currents involved in shaping these

latter behaviours are discussed in more detail later in

this paper. Finally, the periodic solutions disappear via

a homoclinic bifurcation (HC) at I = −12.35 at which

point the period is infinitely large (Figure 3b). A homo-

clinic rather than saddle-node on infinite circle (SNIC)

bifurcation was confirmed by showing that a very high

period (1.27×107) limit cycle joins together with a sad-

dle for this value of ISapp, rather than coalescing with

the saddle at the SN1 bifurcation (Figure 3c).

It is important to note that for the numerical contin-

uation results presented in Figures 3a & 4a, we consider
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ISapp. Dashed line represents -75mV for reference

a very large range of the bifurcation parameter values,

namely ISapp/Dapp ∈ [−500, 500], in order to locate the

Hopf bifurcations giving rise to stable spiking solutions.

The large range of the bifurcation parameter increases

the likelihood of finding turning points for the curve

of steady states. Interpreting the entirety of this range

as meaningful should be cautioned. It is extremely un-

likely that the currents required to reach the solutions

between the Torus bifurcations and between the Torus

and Hopf bifurcations in the model would ever be phys-

iologically relevant, given that the unitary amplitude of

a single CA3-CA3 monosynaptic EPSC is of the order

of 20-30pA [15]. Therefore these solutions are not con-

sidered any further.

3.2 Response to steady dendritic applied current

The bifurcation diagram, using IDapp as the bifurca-

tion parameter (Figure 4a), is qualitatively very sim-

ilar to that for ISapp, although there are some differ-

ences mainly in the curve of steady states. The bot-

tom branch of this curve consists of stable nodes, rep-

resenting the hyperpolarised resting state (see Figure

4di, IDapp = −1). Stability is again lost via a saddle-

node bifurcation (SN1) at IDapp = 0.02728, leading to a

branch of saddles which again turns around at another

saddle-node bifurcation (SN2) at IDapp = −83.33, be-

fore regaining stability again via a supercritical Hopf bi-

furcation (HB) at IDapp = 99.78. Notably, IDapp at the

HB is much greater than that for ISapp, and thus there

is a larger range of IDapp for which there are periodic so-

lutions, despite the rheobase being similar. The branch
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of stable nodes arising from the HB, which represent the

depolarised resting state (see Figure 4di, IDapp = 120)

this time loses stability at a third saddle-node bifur-

cation (SN3) at IDapp = 127.6, giving rise to a final

branch of saddles.

The branch of stable periodic spiking solutions em-

anating from the HB again grows in amplitude and pe-

riod with decreasing IDapp (see Figure 4dvi, IDapp = 70)

until stability is lost between the two torus bifurcations

(TR1 at IDapp = 15.59 and TR2 at IDapp = 28.75).

Within this unstable branch, there is again a form of

waxing and waning spike amplitude (see Figure 4dv,

IDapp = 25). For decreasing IDapp below that of TR2,

a branch of stable, regular periodic spiking solutions

appears (see Figure 4div, IDapp = 12) before stability

is lost again for IDapp < 9.127 at a period doubling

bifurcation (PD). The final unstable branch of period-

ics for low IDapp disappears at IDapp = −3.486 again

via a homoclinic bifurcation (HC). Within this unsta-

ble branch, the system transitions for decreasing IDapp

from doublet activity for IDapp between ≈ 7-9, to a mix-

ture of single spikes and doublets for IDapp of ≈ 6, to

then aperiodic activity with a varying number of spikes

per burst between IDapp of ≈ 2.6 and 5 (see Figure 4diii,

IDapp = 4), to finally periodic VLF bursting between

HC and IDapp of ≈ 2.5 (see Figure 4dii, IDapp = 0.3).

Again the HC was confirmed by showing a very high

period limit cycle solution (1.77× 107) for this value of

IDapp (Figure 4b), which we use as an approximation

of the homoclinic orbit, and with which the SN1 point

did not coalesce (Figure 4c).

It is not entirely surprising that the bifurcation di-

agrams presented in Figures 3a & 4a are qualitatively

very similar, given that the two compartments are cou-
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dots), bifurcation points (magenta dots). SN1 saddle node bifurcation 1 (ISapp = 0.0557), SN2 saddle node bifurcation 2
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pled quite closely. Nevertheless, there is clearly a larger

range of IDapp within which the system is between the

hyperpolarised resting and stable spiking states. This

suggests that preferentially dendritic depolarisation could

engage a wider repertoire of active behaviours and that

dendritic currents could be in a more privileged position

to shape these behaviours.

3.3 Dependence of model cell behaviour on gCa

Indeed lowering the maximal conductance through the

dendritically-located, persistent calcium channel (gCa)

has been shown to switch bursting to spiking activity

for a set value of applied current [53,68]. A change in

gCa from 10 to 7 is sufficient to switch the behaviour of

the Pinksy-Rinzel cell from intrinsic bursting to tonic

firing with frequency accommodation to better repre-

sent the firing properties of CA1 cells [65]. We therefore

investigated how gCa affects the bifurcation structure

of the system, in an attempt to understand this change

mathematically.

We initially re-computed the bifurcation diagrams

in ISapp and IDapp for the CA1 value of gCa = 7 (Figure

5). Using ISapp as the bifurcation parameter, the bifur-

cation diagram (Figure 5a) is extremely similar to that

of the CA3 cell with one noticeable difference; instead
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of the periodic solutions disappearing for low ISapp via a

HC bifurcation, they disappear via a saddle-node on an

invariant circle (SNIC) bifurcation. The saddle-node bi-

furcation of equilibrium solutions corresponding to this

value of ISapp is that of SN1. This was confirmed by

depicting in the Vs − h phase plane that the SN1 equi-

librium bifurcation lies on the limit cycle at the SNIC

bifurcation (Figure 5c) and that this limit cycle used to

approximate the SNIC orbit has high period (5.65×105)

(Figure 5b). In addition, whereas a PD bifurcation was

associated with the loss of stability of periodic solutions

in the CA3 cell, no such transition was detected for the

CA1 cell.

Using IDapp as the bifurcation parameter, there are

two noticeable differences between the CA3 and CA1

cell. Firstly while the upper branch of unstable steady

states did not bifurcate back to a stable solution in the

range of −500 ≤ IDapp ≥ 500 for the CA3 cell, in the

CA1 cell a fourth saddle-node bifurcation was detected

for IDapp = −175.2, where the steady state solutions

turn around again, giving rise to a second depolarised

steady state. This means that in the range of IDapp

between SN1 and SN3, the system is bistable (either

periodic spiking and depolarised steady states between

SN1 and HB, or two depolarised steady states between

HB and SN3, depending on the initial parameters). It is

noted, however, that a similar behaviour might be ob-

served in the CA3 cell if the bifurcation analysis was ex-

tended beyond −500 ≤ IDapp ≤ 500 range. Secondly, no

torus bifurcations were detected for the periodic spik-

ing solutions in the CA1 cell, whereas a pair of torus

bifurcations were present in the CA3 cell. Whilst this

may be of mathematical interest, as discussed above,

the range of IDapp for which this difference manifests

suggests it has no physiological role. As for ISapp, the

periodic solution disappears for low IDapp via a SNIC

bifurcation instead of a HC bifurcation, as was the case

for the CA3 cell. Therefore for all ISapp/IDapp between

the SNIC at ISapp = 0.0556, IDapp = 0.0574 and the HB

at ISapp = 24.01, IDapp = 141.0 (excluding the regions

between the pair of torus bifurcations for ISapp), the

CA1 cell limit cycle solutions will be periodic spiking

with decreasing amplitude and period as ISapp/IDapp

increase, with importantly no regimes of bursting or

aperiodic and spike doubling behaviours.

The disappearance of these regimes is likely directly

attribute to the presence of a codimension-2 bifurcation

in the (I, gCa) parameter space (Figure 6a-b), which

causes the periodic solution to switch from vanishing

via a HC to vanishing via a SNIC, as gCa is decreased.

The dependence of this regime change on gCa also im-

plies that Ca plays an important role in shaping both

irregular spiking and bursting behaviours. To examine

this further, we initially explored how switches between

singlet activity and doublet activity during the irregu-

lar spiking regime may be shaped by Ca, for example
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when ISapp = 2. As shown in figure 7, during the tran-

sition between repetitive singlet activity and doublet

activity, the Vd and Ca peaks phase advance but to dif-

ferent extents, leading to a reduction in the (Ca−Vd)

phase difference and an increase in the peak IKCa
which

drives the membrane potential to a more hyperpolarised

level. This train of events to shift singlet activity to dou-

blet activity seems plausible given changes in gKCa
, and

hence IKCa
, have previously been shown to shift a cell’s

behaviour from spiking to bursting [69,48,63,28].

3.4 Mechanisms of bursting

Finally we study how Ca and the Ca-dependent q dy-

namics shape the bursting behaviour in the model. In

the original paper, the VLF bursting dynamics of the

CA3 cell are described to be largely determined by q

which, when passes below a threshold, was thought to

trigger the initial somatic spike of the burst. As such,

bursting was not thought to persist when q was replaced

by its mean value [53]. Since then, the idea that q acts as

the threshold for burst initiation has been called into



Bifurcation Analysis of a Two-Compartment Hippocampal Pyramidal Cell Model 11

question from phase-plane analysis on a piecewise re-

duced model [6,7]. We therefore performed fast-slow

analysis to probe the mathematical mechanism behind

the bursting dynamics further. Since both Ca and q

decay on slower timescales (13.33ms and 100− 1000ms

respectively) than the other gating variables (< 6ms

within the effective ranges of Vs and Vd see Figure 8a)

[53]) and therefore the ratio of timescales between fast

and slow variables is << 1, this analysis is appropri-

ate to investigate how both the Ca and q dynamics

influence bursting. The fast-slow method was originally

pioneered by Rinzel [55], and involves separating the

full system into a fast subsystem and a slow subsys-

tem, where the slow variables (in this case Ca and q)

can be used as parameters for bifurcation analysis of

the fast subsystem. We analysed the VLF bursting dy-

namics for both applied somatic current and applied

dendritic current. ISapp or IDapp were set to 0.3 with

the other equal to 0 (values that generates VLF burst-

ing in the full system). The same qualitative bifurca-

tion structure was observed in both cases. Therefore we

present only the bifurcation diagrams for ISapp, whilst

describing both bifurcation values for the fast subsys-

tem, where ISapp = 0.3/IDapp = 0.3.

We begin our fast-slow analysis using q as the bi-

furcation parameter. For steady applied current, the

bifurcation diagram of the fast subsystem (Figure 8b)

is formed of a curve of steady states and a curve of

bursting periodic orbits. Since the system continues to

burst while q is fixed, the intraburst dynamics are in-

dependent of q, and this variable (q) cannot act as

a threshold for burst initiation, confirming results in

[6,7]. To elaborate, the curve of steady states has a

lower branch of stable nodes, representing the hyperpo-

larised resting state, which loses stability for decreas-

ing q via a saddle node on invariant circle (SNIC) bi-

furcation at q = 0.1136/q = 0.1119 (see Figure 8d)

and gives rise to an upper branch of saddles. From the

SNIC, a stable branch of bursting periodic solutions

also emerges with initially high period (Figure 8f). As

q decreases, the amplitude of the burst remains fairly

constant while the period decreases. Stability is lost at

q = −0.05923/q = −0.06627 via a period doubling bi-

furcation (PD1) then regained briefly via a second pe-

riod doubling bifurcation (PD2 at q = −0.4779/q =

−0.4844) before being lost again via a saddle node of pe-

riodics (SNP) bifurcation at q = −0.5024/ q = −0.528.

At this point, the bursting periodic orbit branch turns

around and increases in period for increasing q (Figure

8f) until it terminates via a homoclinic bifurcation (HC

at q = 0.2524/q = 0.2653, see Figure 8e). Following the

burst trajectory (shown in cyan in Figure 8b), the phase

point tightly follows the branch of stable nodes for de-

creasing q and then jumps to the maxima of the burst-

ing trajectory once past the SNIC. In the full system,

for this value of applied current, this transition takes

several hundred ms (Figure 8c), again confirming that

the threshold for burst initiation is not described by the

q dynamics. Midway through the burst, q then begins

to increase which pushes the system back through the

SNIC. After this point, the phase point transiently os-

cillates before returning to the branch of stable nodes.

Therefore since the transition below the SNIC in q per-

mits the occurrence of the burst, the time between q

increasing above the SNIC and then decreasing below

the SNIC strongly controls at least part of the inter-

burst interval; a finding consistent with previous work

[7].

Given that q could not fully describe the intraburst

dynamics, we then turned our attention to the second

slow variable, Ca and performed fast-slow analysis us-

ing Ca as the bifurcation parameter. For steady ap-

plied current, the bifurcation diagram in Ca (Figure

9a) has two long branches of stable nodes, an upper

branch representing a depolarised steady state for val-

ues of Ca < 127.5/Ca < 127.6 and a lower branch

representing a hyperpolarised steady state for Ca >

4.263/Ca > 4.117. Stability in the lower branch is lost

for decreasing Ca via a saddle node bifurcation (SN1) at

Ca = 4.263/Ca = 4.117. The resulting unstable branch

of saddles turns around and continues for larger Ca

values. Stability in the upper branch is also lost via a

saddle node bifurcation (SN2) at Ca = 127.5/Ca =

127.6. The branch turns around briefly and is formed

of a series of saddles until stability is regained mo-

mentarily between another couple of saddle node bi-

furcations (SN3 at Ca = 112.5/Ca = 112.6 and SN4

at Ca = 127.2/Ca = 127.4). After SN4, the upper

branch consists of a second series of saddles which turn

around at a fifth saddle-node bifurcation (SN5 at Ca =

62.76/Ca = 63.73) before continuing on to larger val-

ues of Ca. Between SN4 and SN5, there is a subcriti-

cal Hopf bifurcation (HB) at Ca = 112.7/Ca = 113.9

which gives rise to the unstable periodic solutions. For

decreasing Ca, the amplitude and period of the solution

increases (Figure 9c), before turning around at the sad-

dle node of periodics (SNP at Ca = 11.21/Ca = 11.92)

and terminating via a homoclinic bifurcation (HC at

Ca = 14.58/Ca = 15.23) (Figure 9d). Following the

burst trajectory, it can be seen that the phase point,

loosely follows the lower branch of stable nodes for

decreasing Ca and overshoots SN5 before jumping to

the upper branch of stable nodes. Again the attraction

is weak, because the Ca dynamics are only intermedi-

ately slow, and so the phase point transiently oscillates

around this upper branch. Even when the phase point
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is past the HB, there are smaller oscillations around the

unstable upper branch before returning to the attrac-

tion of the lower branch of steady states. VLF bursting

is therefore governed by the Ca dynamics and is of the

fold/subHopf type, adoping the nomenclature in [29],

which has been reported also for biophysical models of

pituitary somatotrophs and lactotrophs [61,69,64].

4 Discussion

4.1 Mechanisms of spiking

The discontinuous functions in the original Pinsky-Rinzel

model were modified to facilitate numerical bifurcation

analysis on the full system (Figure 1), whilst main-

taining the qualitative behaviour of the original model

(Figure 2). We show that spiking behaviour emerges

in the model from a supercritical Hopf bifurcation and

that the rheobase is formed from a saddle-node bifurca-

tion (Figures 3&4). This mechanism of spiking is there-

fore similar to the bifurcation structure, described ear-

lier, for a single compartmental CA3 model [23]. As

gCa is decreased, a codimension-two SNIC bifurcation

switches the periodic spiking solutions from terminat-

ing via a homoclinic bifurcation to terminating via a

SNIC bifurcation (Figure 6). This eliminates the unsta-

ble periodic regime, where bursting and irregular spik-

ing solutions exist, and thus explains why a reduction in

gCa leads to unperturbed spiking for increasing IDapp

and a larger parameter range of ISapp (Figure 5), as

previously observed [53,68]. The disappearance of ir-

regular spiking as gCa decreases, is suggestive that Ca,

as well as shaping bursting behaviour, is also important

in shaping spiking in the model. Indeed we show that

a reduction in the (Ca-Vd) phase difference, and cor-

responding increase in IKCa
is likely to drive activity

from singlet spiking to doublet/triplet spiking in this

irregular spiking regime (Figure 7).

As an example of how understanding where Pinsky-

Rinzel cells sit dynamically is important for understand-

ing spiking in larger networks, we turn out attention to

a combined CA3 and CA1 hippocampal network model,

of Pinsky-Rinzel cells that exhibits sharp wave ripple

(SWR) oscillations [65]. SWRs are transient network

events that occur during periods of awake immobility

and slow wave sleep [12,11,52], and are known to be

important for spatial learning and memory [21,17,30].

During sharp wave ripples, hippocampal place cells that

fire in discrete locations of an environment [50], reacti-

vate such that co-active place cell activity, representing

a discrete environmental location, or sequences of place

cell activity, representing a trajectory through an envi-

ronment, are replayed [71,46,36,20,13,16,14,33]. How-
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ever the mechanisms that select which place cells are

active in SWRs is still unclear, although the intrinsic

excitability of the cells and the local synaptic connec-

tivity structure of the network within which they reside

are both likely to play a role (for review see [2]).

In the Taxidis model [65], CA1 cells are driven to

spike by CA3 cell activity. From a dynamical systems

perspective, the occurrence of a single CA1 spike could

be influenced by CA3 in two ways. Firstly, if the CA1

cell was in a spiking limit cycle regime, excitatory input

from CA3 could phase shift CA1 cell spike times. Sec-

ondly, if the CA1 cell was in a hyperpolarised resting

state, excitatory input from CA3 could push the CA1

cell trajectory through the phase space in a manner that

resembles a spike, but which does not actually push the

CA1 cell trajectory onto a stable limit cycle i.e. causes a

transient. The bifurcation analysis, conducted here, fa-

cilitates the differentiation between these quite different

mechanisms of CA1 spiking, namely periodic attractor

driven verses transient oscillations. The analysis shows

that for the parameter values of ISapp and gCa used in

the model (0 and 7 respectively), the CA1 cells are in a

hyperpolarised resting regime below the SNIC. There-

fore at least in this model, it can be concluded that CA1

cell spiking in SWRs is driven by transient oscillations,

induced by presynaptic CA3 cell activity, and not by a

periodic attractor driven excitability.

4.2 Mechanisms of bursting

Experimental findings have shown that the intrinsic

bursting of CA3 cells is driven by several processes: the

intital fast spike is driven by activity through sodium

channels; the ensuing after depolarising potential (ADP)

subsequently drives the burst; and the burst is then ter-

minated by an after hyperpolarising potential (AHP)

[72,73]. Although the ionic bases for the ADP and AHP

that occur during bursting in CA3 pyramidal cells are

not fully understood, they are both calcium driven [72,

73,58] and are likely mediated by T/R-type calcium

channels and calcium-activated potassium channels re-

spectively, as has been found in some cases for CA1 cell

bursting [38,41,1], although see [3]. Kv7/KCNQ/M-

channels also play a role in terminating the ADP [70,

8].

Previous studies using fast-slow analysis of CA3 pyra-

midal cell models have proposed different mechanisms

as underlying bursting activity [34,74]. In a reduced

version of the Pinsky-Rinzel model with similar somatic

currents but only a persistent sodium current and a

slow potassium current in the dendritic compartment;

bursting activity was found to be of the square-wave/fold-

homoclinic type and dependent on the activation vari-

able of the slow potassium current [34]. In contrast, us-

ing fast-slow analysis on a single-compartmental CA3

model, incorporating various additional currents to the

Pinsky-Rinzel model, bursting was found to be of the

parabolic type and dependent on two variables: the

slow autocatalytic activation variable for a T-type cal-

cium channel and the activation variable for the slow

calcium-dependent potassium current [74].

It remained to be established which, if either, of

these mechanisms is true for the original Pinsky-Rinzel

model, where the two candidate slow variables for con-

trolling bursting are calcium and the activation gate, q,

of the dendritic after hyperpolarisation current. Here,

we identify a mechanism intermediate between the two

cases, whereby bursting is of the fold/sub-Hopf type

and relies on just one variable, calcium, which is depen-

dent on the dendritic calcium current, ICa, and in fact

controls both the calcium-dependent potassium current,

IKCa
, and the activation gate, q, of the dendritic af-

ter hyperpolarisation current, IKAHP
. The rise of Ca

through the subcritical Hopf bifurcation mediates the

slow termination of the burst (Figure 9), thereby bio-

physically explaining previous results on a piecewise

reduced system, showing disruption of the ping-pong

mechanism and termination of the burst as ICa was

activated [6,7]. The results, here, are also consistent

with the blockade of calcium channels perturbing CA3

bursting [72,73] which could not be explained by burst-

ing dependent on activation of a slow potassium current

alone [34].

The original Pinsky-Rinzel paper proposed that q

sets the burst initiation threshold [53]. Subsequent work,

using the piecewise reduced system, showed this thresh-

old was independent of q and instead set by Vd [6,7].

We clarify this point here by showing, using fast-slow

analysis, that while q plays no role in setting the thresh-

old for the initial somatic spike in the burst or indeed

the intraburst dynamics, it does set part of the inter-

burst interval (Figure 8). The biophysical implications

of this is that the dendritic afterhyperpolarisation cur-

rent plays an important role in setting the interburst

interval.

Nevertheless, it it important to note that the depen-

dence of bursting on just one slow variable is likely due

to the bistability of the fast subsystem in the Pinsky-

Rinzel model which is driven by the window INa [22].

This derives from the overlap in the steady-state activa-

tion and inactivation curves for the INa current, where

the inactivation curve is shifted to more depolarised val-

ues (> 20mV ) compared to experimental results [57].

When this window current was reduced, bursting in a

different CA3 model was instead dependent on two slow

variables and was of the parabolic type [74].
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4.3 Conclusion

By proposing a modified smooth system of differential

equations that can be used to further analyse the full

Pinsky-Rinzel model, we hope that future studies using

Pinsky-Rinzel cells as part of a network, or as a means

to analyse firing patterns will have a tool with which to

systematically identify parameter regimes of interest to

their research question. Characterising the bifurcation

structure for applied current, calcium conductance and

applying fast-slow analysis to investigate the bursting

regime in the systems already provides insight into the

parameter dependence of the model dynamics.
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currents. Pflügers Archiv 92(10-12), 521–562 (1902)

5. Bittner, K.C., Grienberger, C., Vaidya, S.P., Milstein,
A.D., Macklin, J.J., Suh, J., Tonegawa, S., Magee, J.C.:
Conjunctive input processing drives feature selectivity in
hippocampal CA1 neurons. Nature Neuroscience 18(8),
1133 (2015)

6. Booth, V., Bose, A.: Neural mechanisms for generating
rate and temporal codes in model CA3 pyramidal cells.
Journal of Neurophysiology 85(6), 2432–2445 (2001)

7. Bose, A., Booth, V.: Bursting in 2-compartment neurons:
A case study of the pinsky-rinzel model. Bursting: The
Genesis of Rhythm in the Nervous System pp. 123–144
(2005)

8. Brown, J.T., Randall, A.D.: Activity-dependent depres-
sion of the spike after-depolarization generates long-
lasting intrinsic plasticity in hippocampal CA3 pyramidal
neurons. Journal of Physiology-London 587(6), 1265–
1281 (2009)

9. Buchanan, K.A., Mellor, J.R.: The activity requirements
for spike timing-dependent plasticity in the hippocam-
pus. Frontiers in synaptic neuroscience 2, 11–11 (2010)

10. Burgess, N., Maguire, E.A., O’Keefe, J.: The human hip-
pocampus and spatial and episodic memory. Neuron
35(4), 625–641 (2002)

11. Buzsaki, G.: Hippocampal sharp waves - their origin and
significance. Brain Research 398(2) (1986)

12. Buzsaki, G., Leung, L.W., Vanderwolf, C.H.: Cellular
bases of hippocampal eeg in the behaving rat. Brain
research 287(2), 139–71 (1983)

13. Csicsvari, J., O’Neill, J., Allen, K., Senior, T.: Place-
selective firing contributes to the reverse-order reacti-
vation of CA1 pyramidal cells during sharp waves in
open-field exploration. European Journal of Neuroscience
26(3), 704–716 (2007)

14. Davidson, T.J., Kloosterman, F., Wilson, M.A.: Hip-
pocampal replay of extended experience. Neuron 63(4)
(2009)

15. Debanne, D., Guerineau, N.C., Gahwiler, B.H., Thomp-
son, S.M.: Physiology and pharmacology of unitary
synaptic connections between pairs of cells in areas ca3
and ca1 of rat hippocampal slice cultures. Journal of
Neurophysiology 73(3), 1282–1294 (1995)

16. Diba, K., Buzsaki, G.: Forward and reverse hippocampal
place-cell sequences during ripples. Nature Neuroscience
10(10), 1241–1242 (2007)

17. Ego-Stengel, V., Wilson, M.A.: Disruption of ripple-
associated hippocampal activity during rest impairs spa-
tial learning in the rat. Hippocampus 20(1), 1–10 (2010)

18. Epsztein, J., Brecht, M., Lee, A.K.: Intracellular determi-
nants of hippocampal CA1 place and silent cell activity
in a novel environment. Neuron 70(1), 109–120 (2011)

19. Ermentrout, B.: Simulating, analyzing, and animating
dynamical systems: a guide to XPPAUT forresearchers
and students. Society for Industrial and Applied Mathe-
matics, Philadelphia (2002)

20. Foster, D.J., Wilson, M.A.: Reverse replay of behavioural
sequences in hippocampal place cells during the awake
state. Nature 440(7084) (2006)

21. Girardeau, G., Benchenane, K., Wiener, S.I., Buzsaki,
G., Zugaro, M.B.: Selective suppression of hippocampal
ripples impairs spatial memory. Nature Neuroscience
12(10), 1222–1223 (2009)

22. Golomb, D., Yue, C., Yaari, Y.: Contribution of persistent
na+ current and M-type K+ current to somatic burst-
ing in CA1 pyramidal cells: Combined experimental and
modeling study. Journal of Neurophysiology 96(4), 1912–
1926 (2006)

23. Grobler, T., Barna, G., Erdi, P.: Statistical model of the
hippocampal CA3 region - i. the single-cell module: burst-
ing model of the pyramidal cell. Biological Cybernetics
79(4), 301–308 (1998)

24. Hahn, P.J., Durand, D.M.: Bistability dynamics in simu-
lations of neural activity in high-extracellular-potassium
conditions. Journal of Computational Neuroscience
11(1), 5–18 (2001)

25. Harvey, C.D., Collman, F., Dombeck, D.A., Tank, D.W.:
Intracellular dynamics of hippocampal place cells during
virtual navigation. Nature 461(7266), 941–U196 (2009)

26. Hodgkin, A.L., Horowicz, P.: The influence of potassium
and chloride ions on the membrane potential of single
muscle fibres. Journal of Physiology-London 148(1),
127–160 (1959)

27. Hodgkin, A.L., Huxley, A.F.: A quantitative description
of membrane current and its application to conduction
and excitation in nerve. Journal of Physiology-London
117(4), 500–544 (1952)

28. Iosub, R., Avitabile, D., Grant, L., Tsaneva-Atanasova,
K., Kennedy, H.J.: Calcium-induced calcium release dur-
ing action potential firing in developing inner hair cells.
Biophysical Journal 108(5), 1003–1012 (2015)



16 Laura A Atherton et al.

29. Izhikevich, E.M.: Neural excitability, spiking and burst-
ing. International Journal of Bifurcation and Chaos
10(6), 1171–1266 (2000)

30. Jadhav, S.P., Kemere, C., German, P.W., Frank, L.M.:
Awake hippocampal sharp-wave ripples support spatial
memory. Science 336(6087), 1454–1458 (2012)

31. Kamondi, A., Acsady, L., Wang, X.J., Buzsaki, G.: Theta
oscillations in somata and dendrites of hippocampal pyra-
midal cells in vivo: Activity-dependent phase-precession
of action potentials. Hippocampus 8(3), 244–261 (1998)

32. Kandel, E.R., Spencer, W.A.: Electrophysiology of hip-
pocampal neurons .2. after-potentials and repetitive fir-
ing. Journal of Neurophysiology 24(3), 243– (1961)

33. Karlsson, M.P., Frank, L.M.: Awake replay of remote
experiences in the hippocampus. Nature Neuroscience
12(7), 913–32 (2009)

34. Kepecs, A., Wang, X.J.: Analysis of complex bursting in
cortical pyramidal neuron models. Neurocomputing 32,
181–187 (2000)

35. Le Duigou, C., Simonnet, J., Telenczuk, M.T., Fricker,
D., Miles, R.: Recurrent synapses and circuits in the CA3
region of the hippocampus: an associative network. Fron-
tiers in Cellular Neuroscience 7 (2014)

36. Lee, A.K., Wilson, M.A.: Memory of sequential experi-
ence in the hippocampus during slow wave sleep. Neuron
36(6) (2002)

37. Lisman, J.E.: Bursts as a unit of neural information:
Making unreliable synapses reliable. Trends in Neuro-
sciences 20(1), 38–43 (1997)

38. Magee, J.C., Carruth, M.: Dendritic voltage-gated ion
channels regulate the action potential firing mode of hip-
pocampal CA1 pyramidal neurons. Journal of Neuro-
physiology 82(4), 1895–1901 (1999)

39. Mainen, Z.F., Sejnowski, T.J.: Influence of dendritic
structure on firing pattern in model neocortical neurons.
Nature 382(6589), 363–366 (1996)

40. McNaughton, B.L., Morris, R.G.M.: Hippocampal synap-
tic enhancement and information-storage within a dis-
tributed memory system. Trends in Neurosciences
10(10), 408–415 (1987)

41. Metz, A.E., Jarsky, T., Martina, M., Spruston, N.: R-
type calcium channels contribute to afterdepolarization
and bursting in hippocampal CA1 pyramidal neurons.
Journal of Neuroscience 25(24), 5763–5773 (2005)

42. Migliore, M., Cook, E.P., Jaffe, D.B., Turner, D.A., John-
ston, D.: Computer-simulations of morphologically recon-
structed CA3 hippocampal-neurons. Journal of Neuro-
physiology 73(3), 1157–1168 (1995)

43. Miles, R., Wong, R.K.S.: Single neurons can initiate syn-
chronized population discharge in the hippocampus. Na-
ture 306(5941), 371–373 (1983)

44. Mizuseki, K., Royer, S., Diba, K., Buzsaki, G.: Activ-
ity dynamics and behavioral correlates of CA3 and CA1
hippocampal pyramidal neurons. Hippocampus 22(8),
1659–1680 (2012)

45. Morris, R.G.M., Garrud, P., Rawlins, J.N.P., Okeefe,
J.: Place navigation impaired in rats with hippocampal-
lesions. Nature 297(5868) (1982)

46. Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J.,
Buzsaki, G.: Replay and time compression of recurring
spike sequences in the hippocampus. Journal of Neuro-
science 19(21), 9497–9507 (1999)

47. Nakazawa, K., Quirk, M.C., Chitwood, R.A., Watanabe,
M., Yeckel, M.F., Sun, L.D., Kato, A., Carr, C.A., John-
ston, D., Wilson, M.A., Tonegawa, S.: Requirement for
hippocampal CA3 nmda receptors in associative mem-
ory recall. Science 297(5579), 211–218 (2002)

48. Nowacki, J., Mazlan, S., Osinga, H.M., Tsaneva-
Atanasova, K.: The role of large-conductance calcium-
activated (bk) channels in shaping bursting oscillations
of a somatotroph cell model. Physica D: Nonlinear Phe-
nomena 239(9), 485–493 (2010)

49. Nowacki, J., Osinga, H.M., Brown, J.T., Randall, A.D.,
Tsaneva-Atanasova, K.: A unified model of CA1/3 pyra-
midal cells: An investigation into excitability. Progress in
Biophysics & Molecular Biology 105(1-2), 34–48 (2011)

50. O’Keefe, J., Dostrovsky, J.: Hippocampus as a spatial
map - preliminary evidence from unit activity in freely-
moving rat. Brain Research 34(1), 171–175 (1971)

51. O’Keefe, J., Nadal, L.: The hippocampus as a cognitive
map. Clarendon Press, Oxford (1978)

52. O’Neill, J., Pleydell-Bouverie, B., Dupret, D., Csicsvari,
J.: Play it again: reactivation of waking experience and
memory. Trends in Neurosciences 33(5), 220–229 (2010)

53. Pinsky, P.F., Rinzel, J.: Intrinsic and network rhythmoge-
nesis in a reduced traub model for CA3 neurons. Journal
of computational neuroscience 1(1-2), 39–60 (1994)

54. Riedel, G., Micheau, J., Lam, A.G.M., Roloff, E.V., Mar-
tin, S.J., Bridge, H., de Hoz, L., Poeschel, B., McCulloch,
J., Morris, R.G.M.: Reversible neural inactivation reveals
hippocampal participation in several memory processes.
Nature Neuroscience 2(10), 898–905 (1999)

55. Rinzel, J.: A formal classification of bursting mechanisms
in excitable systems. Teramoto, E. and M. Yamaguti
(Ed.). Lecture Notes in Biomathematics, Vol. 71. Mathe-
matical Topics in Population Biology, Morphogenesis and
Neurosciences; International Symposium, Kyoto, Japan,
November 10-15, 1985. Ix+348p. Springer-Verlag: New
York, New York, USA; Berlin, West Germany. Illus. Pa-
per pp. 267–281 (1987)

56. Rolls, E.T., Kesner, R.P.: A computational theory of hip-
pocampal function, and empirical tests of the theory.
Progress in Neurobiology 79(1), 1–48 (2006)

57. Sah, P., Gibb, A.J., Gage, P.W.: The sodium current
underlying action-potentials in guinea-pig hippocampal
CA1 neurons. Journal of General Physiology 91(3), 373–
398 (1988)

58. Schwartzkroin, P.A., Stafstrom, C.E.: Effects of egta
on the calcium-activated afterhyperpolarization in hip-
pocampal CA3-pyramidal cells. Science 210(4474),
1125–1126 (1980)

59. Spruston, N., McBain, C.: Structural and functional
properties of hippocampal neurons, pp. 133–201. Oxford
University Press, New York (2007)

60. Squire, L.R.: Memory and the hippocampus - a synthesis
from findings with rats, monkeys, and humans. Psycho-
logical Review 99(2), 195–231 (1992)

61. Stern, J.V., Osinga, H.M., LeBeau, A., Sherman, A.: Re-
setting behavior in a model of bursting in secretory pitu-
itary cells: Distinguishing plateaus from pseudo-plateaus.
Bulletin of Mathematical Biology 70(1), 68–88 (2008)

62. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With ap-
plications to Physics, Biology, Chemistry and Engineer-
ing. Perseus Books (2001)

63. Szalai, R., Tsaneva-Atanasova, K., Homer, M.E., Champ-
neys, A.R., Kennedy, H.J., Cooper, N.P.: Nonlinear mod-
els of development, amplification and compression in the
mammalian cochlea. Philosophical Transactions of the
Royal Society a-Mathematical Physical and Engineering
Sciences 369(1954), 4183–4204 (2011)

64. Tabak, J., Toporikova, N., Freeman, M.E., Bertram, R.:
Low dose of dopamine may stimulate prolactin secretion
by increasing fast potassium currents. Journal of Com-
putational Neuroscience 22(2), 211–222 (2007)



Bifurcation Analysis of a Two-Compartment Hippocampal Pyramidal Cell Model 17

65. Taxidis, J., Coombes, S., Mason, R., Owen, M.R.: Mod-
eling sharp wave-ripple complexes through a CA3-CA1
network model with chemical synapses. Hippocampus
22(5), 995–1017 (2012)

66. Tiesinga, P.H.E., Fellous, J.M., Jose, J.V., Sejnowski,
T.J.: Computational model of carbachol-induced delta,
theta, and gamma oscillations in the hippocampus. Hip-
pocampus 11(3), 251–274 (2001)

67. Traub, R.D., Wong, R.K.S.: Cellular mechanism of neu-
ronal synchronization in epilepsy. Science 216(4547),
745–747 (1982)

68. Traub, R.D., Wong, R.K.S., Miles, R., Michelson, H.: A
model of a CA3 hippocampal pyramidal neuron incor-
porating voltage-clamp data on intrinsic conductances.
Journal of Neurophysiology 66(2), 635–650 (1991)

69. Tsaneva-Atanasova, K., Sherman, A., van Goor, F., Sto-
jilkovic, S.S.: Mechanism of spontaneous and receptor-
controlled electrical activity in pituitary somatotrophs:
Experiments and theory. Journal of Neurophysiology
98(1), 131–144 (2007)

70. Vervaeke, K., Gu, N., Agdestein, C., Hu, H., Storm, J.F.:
Kv7/kcnq/m-channels in rat glutamatergic hippocam-
pal axons and their role in regulation of excitability
and transmitter release. Journal of Physiology-London
576(1), 235–256 (2006)

71. Wilson, M.A., McNaughton, B.L.: Reactivation of hip-
pocampal ensemble memories during sleep. Science
265(5172), 676–679 (1994)

72. Wong, R.K.S., Prince, D.A.: Participation of calcium
spikes during intrinsic burst firing in hippocampal neu-
rons. Brain Research 159(2), 385–390 (1978)

73. Wong, R.K.S., Prince, D.A.: After-potential generation in
hippocampal pyramidal cells. Journal of Neurophysiology
45(1), 86–97 (1981)

74. Xu, J., Clancy, C.E.: Ionic mechanisms of endogenous
bursting in CA3 hippocampal pyramidal neurons: A
model study. Plos One 3(4) (2008)


