45 research outputs found

    The MAP kinase HwHog1 from the halophilic black yeast Hortaea werneckii: coping with stresses in solar salterns

    Get PDF
    BACKGROUND: Hortaea werneckii is one of the most salt-tolerant species among microorganisms. It has been isolated from hypersaline waters of salterns as one of the predominant species of a group of halophilic and halotolerant melanized yeast-like fungi, arbitrarily named as "black yeasts". It has previously been shown that H. werneckii has distinct mechanisms of adaptation to high salinity environments that are not seen in salt-sensitive and only moderately salt-tolerant fungi. In H. werneckii, the HOG pathway is important for sensing the changes in environmental osmolarity, as demonstrated by identification of three main pathway components: the mitogen-activated protein kinase (MAPK) HwHog1, the MAPK kinase HwPbs2, and the putative histidine kinase osmosensor HwHhk7. RESULTS: In this study, we show that the expression of HwHOG1 in salt-adapted cells depends on the environmental salinity and that HwHOG1 transcription responds rapidly but reciprocally to the acute hyper-saline or hypo-saline stress. Molecular modelling of HwHog1 reveals an overall structural homology with other MAPKs. HwHog1 complements the function of ScHog1 in the Saccharomyces cerevisiae multistress response. We also show that hyper-osmolar, oxidative and high-temperature stresses activate the HwHog1 kinase, although under high-temperature stress the signal is not transmitted via the MAPK kinase Pbs2. Identification of HOG1-like genes from other halotolerant fungi isolated from solar salterns demonstrates a high degree of similarity and excellent phylogenetic clustering with orthologues of fungal origin. CONCLUSION: The HOG signalling pathway has an important role in sensing and responding to hyper-osmolar, oxidative and high-temperature stresses in the halophilic fungi H. werneckii. These findings are an important advance in our understanding of the HOG pathway response to stress in H. werneckii, a proposed model organism for studying the salt tolerance of halophilic and halotolerant eukaryotes

    Interactions between Nef and AIP1 proliferate multivesicular bodies and facilitate egress of HIV-1

    Get PDF
    BACKGROUND: Nef is an accessory protein of primate lentiviruses, HIV-1, HIV-2 and SIV. Besides removing CD4 and MHC class I from the surface and activating cellular signaling cascades, Nef also binds GagPol during late stages of the viral replicative cycle. In this report, we investigated further the ability of Nef to facilitate the replication of HIV-1. RESULTS: To this end, first the release of new viral particles was much lower in the absence of Nef in a T cell line. Since the same results were obtained in the absence of the viral envelope using pseudo-typed viruses, this phenomenon was independent of CD4 and enhanced infectivity. Next, we found that Nef not only possesses a consensus motif for but also binds AIP1 in vitro and in vivo. AIP1 is the critical intermediate in the formation of multivesicular bodies (MVBs), which play an important role in the budding and release of viruses from infected cells. Indeed, Nef proliferated MVBs in cells, but only when its AIP1-binding site was intact. Finally, these functions of Nef were reproduced in primary macrophages, where the wild type but not mutant Nef proteins led to increased release of new viral particles from infected cells. CONCLUSION: We conclude that by binding GagPol and AIP1, Nef not only proliferates MVBs but also contributes to the egress of viral particles from infected cells

    Low Water Activity Induces the Production of Bioactive Metabolites in Halophilic and Halotolerant Fungi

    Get PDF
    The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity

    A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction

    Get PDF
    The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general

    Autonomous and Adaptive Cross-Scalar Structures and Systems

    No full text
    This paper describes work carried out to investigate the potential of cross scalar design in architectural and spatial context

    Mitochondrial mediation of environmental osmolytes discrimination during osmoadaptation in the extremely halotolerant black yeast Hortaea werneckiiFungal Genet Biol

    No full text
    We have investigated the mitochondrial responses to hyperosmotic environments of ionic (4.5 M NaCl) and non-ionic (3.0 M sorbitol) osmolytes in the most halo/osmo-tolerant black yeast, Hortaea werneckii. Adaptation to both types of osmolytes resulted in differential expression of mitochondria-related genes. Live-cell imaging has revealed a condensation of mitochondria in hyperosmotic media that depends on osmolyte type. In the hypersaline medium, this was accompanied by increased ATP synthesis and oxidative damage protection, whereas adaptation to the non-ionic osmolyte resulted in a decrease in ATP synthesis and lipid peroxidation level in mitochondria. A proteomic study of the mitochondria revealed preferential accumulation of energy metabolism enzymes in the hypersaline medium, and accumulation of protein chaperones in the non-ionic osmolyte. The HwBmh1/14-3-3 protein, localized to mitochondria in hypersaline conditions, and not at optimal salinity, suggesting its role in differential perception of ionic and non-ionic osmolytes in H. werneckii
    corecore