15 research outputs found

    The Molecular Gas Environment in the 20 KMS−1 Cloud in the Central Molecular Zone

    Get PDF
    We recently reported a population of protostellar candidates in the 20 kms−1 cloud in the Central Molecular Zone of the Milky Way, traced by H2O masers in gravitationally bound dense cores. In this paper, we report high-angular-resolution (_3′′) molecular line studies of the environment of star formation in this cloud. Maps of various molecular line transitions as well as the continuum at 1.3 mm are obtained using the Submillimeter Array. Five NH3 inversion lines and the 1.3 cm continuum are observed with the Karl G. Jansky Very Large Array. The interferometric observations are complemented with single-dish data. We find that the CH3OH, SO, and HNCO lines, which are usually shock tracers, are better correlated spatially with the compact dust emission from dense cores among the detected lines. These lines also show enhancement in intensities with respect to SiO intensities toward the compact dust emission, suggesting the presence of slow shocks or hot cores in these regions. We find gas temperatures of &100 K at 0.1-pc scales based on RADEX modelling of the H2CO and NH3 lines. Although no strong correlations between temperatures and linewidths/H2O maser luminosities are found, in high-angular-resolution maps we notice several candidate shock heated regions offset from any dense cores, as well as signatures of localized heating by protostars in several dense cores. Our findings suggest that at 0.1-pc scales in this cloud star formation and strong turbulence may together affect the chemistry and temperature of the molecular gas

    RADIO OBSERVATIONS of A SAMPLE of BROAD-LINE TYPE IC SUPERNOVAE DISCOVERED by PTF/IPTF: A SEARCH for RELATIVISTIC EXPLOSIONS

    Get PDF
    © 2016. The American Astronomical Society. All rights reserved..Long duration γ-ray bursts are a rare subclass of stripped-envelope core-collapse supernovae (SNe) that launch collimated relativistic outflows (jets). All γ-ray-burst-associated SNe are spectroscopically Type Ic, with broad-lines, but the fraction of broad-lined SNe Ic harboring low-luminosity γ-ray bursts remains largely unconstrained. Some SNe should be accompanied by off-axis γ-ray burst jets that initially remain invisible, but then emerge as strong radio sources (as the jets decelerate). However, this critical prediction of the jet model for γ-ray bursts has yet to be verified observationally. Here, we present K. G. Jansky Very Large Array observations of 15 broad-lined SNe of Type Ic discovered by the Palomar Transient Factory in an untargeted manner. Most of the SNe in our sample exclude radio emission observationally similar to that of the radio-loud, relativistic SN 1998bw. We constrain the fraction of 1998bw-like broad-lined SNe Ic to be (99.865% confidence). Most of the events in our sample also exclude off-axis jets similar to GRB 031203 and GRB 030329, but we cannot rule out off-axis γ-ray bursts expanding in a low-density wind environment. Three SNe in our sample are detected in the radio. PTF11qcj and PTF14dby show late-time radio emission with average ejecta speeds of ≈0.3-0.4 c, on the dividing line between relativistic and "ordinary" SNe. The speed of PTF11cmh radio ejecta is poorly constrained. We estimate that (99.865% confidence) of the broad-lined SNe Ic in our sample may harbor off-axis γ-ray bursts expanding in media with densities in the range probed by this study

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
    corecore