351 research outputs found

    Adding flavor to the gravity dual of non-commutative gauge theories

    Full text link
    We study the addition of flavor degrees of freedom to the supergravity dual of the non-commutative deformation of the maximally supersymmetric gauge theories. By considering D7 flavor branes in the probe approximation and studying their fluctuations we extract the spectrum of scalar and vector mesons as a function of the non-commutativity. We find that the spectrum for very large non-commutative parameter is equal to the one in the commutative theory, while for some intermediate values of the non-commutativity some of the modes disappear from the discrete spectrum. We also study the semiclassical dynamics of rotating open strings attached to the D7-brane, which correspond to mesons with large spin. Under the effect of the non-commutativity the open strings get tilted. However, at small(large) distances they display the same Regge-like (Coulombic) behaviour as in the commutative theory. We also consider the addition of D5-flavor branes to the non-commutative deformation of the N=1 supersymmetric Maldacena-Nunez background.Comment: 50 pages, 9 figures, LaTeX; v2: minor improvements, references added; v3: typos correcte

    Landau Analog Levels for Dipoles in the Noncommutative Space and Phase Space

    Full text link
    In the present contribution we investigate the Landau analog energy quantization for neutral particles, that possesses a nonzero permanent magnetic and electric dipole moments, in the presence of an homogeneous electric and magnetic external fields in the context of the noncommutative quantum mechanics. Also, we analyze the Landau--Aharonov--Casher and Landau--He--McKellar--Wilkens quantization due to noncommutative quantum dynamics of magnetic and electric dipoles in the presence of an external electric and magnetic fields and the energy spectrum and the eigenfunctions are obtained. Furthermore, we have analyzed Landau quantization analogs in the noncommutative phase space, and we obtain also the energy spectrum and the eigenfunctions in this context.Comment: 20 pages, references adde

    Holographic flavor on the Higgs branch

    Get PDF
    In this paper we study the holographic dual, in several spacetime dimensions, of the Higgs branch of gauge theories with fundamental matter. These theories contain defects of various codimensionalities, where the matter fields are located. In the holographic description the matter is added by considering flavor brane probes in the supergravity backgrounds generated by color branes, while the Higgs branch is obtained when the color and flavor branes recombine with each other. We show that, generically, the holographic dual of the Higgs phase is realized by means of the addition of extra flux on the flavor branes and by choosing their appropriate embedding in the background geometry. This suggests a dielectric interpretation in terms of the color branes, whose vacuum solutions precisely match the F- and D-flatness conditions obtained on the field theory side. We further compute the meson mass spectra in several cases and show that when the defect added has codimension greater than zero it becomes continuous and gapless.Comment: 59 pages, 1 figure;v2: references adde

    Interstellar MHD Turbulence and Star Formation

    Full text link
    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: i) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; ii) the nature of the clumps produced by thermal instability, noting that, contrary to classical ideas, they in general accrete mass from their environment; iii) the density-magnetic field correlation (or lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; v) the formation of cold, dense clouds aided by thermal instability; vi) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, and vii) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as per referee's recommendation

    Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates

    Full text link
    We present a theory of the density correlations that appear in an atomic Bose-Einstein condensate as a consequence of the dynamical Casimir emission of pairs of Bogoliubov phonons when the atom-atom scattering length is modulated in time. Different regimes as a function of the temporal shape of the modulation are identified and a simple physical picture of the phenomenon is discussed. Analytical expressions for the density correlation function are provided for the most significant limiting cases. This theory is able to explain some unexpected features recently observed in numerical calculations of Hawking radiation from analog black holes

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum, and jets at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search has been performed for pair production of heavy vectorlike down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum, and multiple jets. One or more jets are required to be tagged as arising from b quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb −1 . No significant excess of events is observed above the expected background. Limits are set on vectorlike B production, as a function of the B branching ratios, assuming the allowable decay modes are B → Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B → Wt, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 810 GeV (760 GeV). In the case where the vectorlike B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T 5/3 , with subsequent decay T 5/3 → Wt, sets an observed (expected) 95% C.L. lower limit on the T 5/3 mass of 840 GeV (780 GeV)

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Search for W′→tb→qqbb decays in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for a massive W′ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of √s=8 TeV and corresponds to 20.3 fb−1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W′ bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the W′→tb cross section times branching ratio ranging from 0.16pb to 0.33pb for left-handed W′ bosons, and ranging from 0.10pb to 0.21pb for W′ bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′boson
    corecore