46 research outputs found

    Elastic interactions of active cells with soft materials

    Full text link
    Anchorage-dependent cells collect information on the mechanical properties of the environment through their contractile machineries and use this information to position and orient themselves. Since the probing process is anisotropic, cellular force patterns during active mechanosensing can be modelled as anisotropic force contraction dipoles. Their build-up depends on the mechanical properties of the environment, including elastic rigidity and prestrain. In a finite sized sample, it also depends on sample geometry and boundary conditions through image strain fields. We discuss the interactions of active cells with an elastic environment and compare it to the case of physical force dipoles. Despite marked differences, both cases can be described in the same theoretical framework. We exactly solve the elastic equations for anisotropic force contraction dipoles in different geometries (full space, halfspace and sphere) and with different boundary conditions. These results are then used to predict optimal position and orientation of mechanosensing cells in soft material.Comment: Revtex, 38 pages, 8 Postscript files included; revised version, accepted for publication in Phys. Rev.

    Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene

    Get PDF
    BACKGROUND: Matrix metalloprotease 9 (MMP-9) is associated with inflammation and lung remodeling in chronic obstructive pulmonary disease (COPD). We hypothesized that elevated circulating MMP-9 represents a potentially novel biomarker that identifies a subset of individuals with COPD with an inflammatory phenotype who are at increased risk for acute exacerbation (AECOPD). METHODS: We analyzed Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) and Genetic Epidemiology of COPD (COPDGene) cohorts for which baseline and prospective data were available. Elevated MMP-9 was defined based on >95th percentile plasma values from control (non-COPD) sample in SPIROMICS. COPD subjects were classified as having elevated or nonelevated MMP-9. Logistic, Poisson, and Kaplan-Meier analyses were used to identify associations with prospective AECOPD in both cohorts. RESULTS: Elevated MMP-9 was present in 95/1,053 (9%) of SPIROMICS and 41/140 (29%) of COPDGene participants with COPD. COPD subjects with elevated MMP-9 had a 13%-16% increased absolute risk for AECOPD and a higher median (interquartile range; IQR) annual AECOPD rate (0.33 [0-0.74] versus 0 [0-0.80] events/year and 0.9 [0.5-2] versus 0.5 [0-1.4] events/year for SPIROMICS and COPDGene, respectively). In adjusted models within each cohort, elevated MMP-9 was associated with increased odds (odds ratio [OR], 1.71; 95%CI, 1.00-2.90; and OR, 3.03; 95%CI, 1.02-9.01), frequency (incidence rate ratio [IRR], 1.45; 95%CI, 1.23-1.7; and IRR, 1.24; 95%CI, 1.03-1.49), and shorter time-to-first AECOPD (21.7 versus 31.7 months and 14 versus 21 months) in SPIROMICS and COPDGene, respectively. CONCLUSIONS: Elevated MMP-9 was independently associated with AECOPD risk in 2 well-characterized COPD cohorts. These findings provide evidence for MMP-9 as a prognostic biomarker and potential therapeutic target in COPD. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01969344 (SPIROMICS) and NCT00608764 (COPDGene). FUNDING: This work was funded by K08 HL123940 to JMW; R01HL124233 to PJC; Merit Review I01 CX000911 to JLC; R01 (R01HL102371, R01HL126596) and VA Merit (I01BX001756) to AG. SPIROMICS (Subpopulations and Intermediate Outcomes in COPD Study) is funded by contracts from the NHLBI (HHSN268200900013C, HHSN268200900014C,HHSN268200900015C HHSN268200900016C, HHSN268200900017C, HHSN268200900018C, HHSN268200900019C, and HHSN268200900020C) and a grant from the NIH/NHLBI (U01 HL137880), and supplemented by contributions made through the Foundation for the NIH and the COPD Foundation from AstraZeneca/MedImmune; Bayer; Bellerophon Therapeutics; Boehringer-Ingelheim Pharmaceuticals Inc.; Chiesi Farmaceutici; Forest Research Institute Inc.; GlaxoSmithKline; Grifols Therapeutics Inc.; Ikaria Inc.; Novartis Pharmaceuticals Corporation; Nycomed GmbH; ProterixBio; Regeneron Pharmaceuticals Inc.; Sanofi; Sunovion; Takeda Pharmaceutical Company; and Theravance Biopharma and Mylan. COPDGene is funded by the NHLBI (R01 HL089897 and R01 HL089856) and by the COPD Foundation through contributions made to an Industry Advisory Board composed of AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Pfizer, Siemens, and Sunovion

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Interleukin-11 (IL-11) acts as synergistic factor for the proliferation of human myeloid leukemic cells

    No full text
    Interleukin-11 is a stromal cells derived cytokine which stimulates the proliferation of primitive haemopoietic progenitor cells. For this paper we have studied the constitutive expression of IL-11 mRNA in a panel of well-known leukaemic cell lines and samples from AML patients at diagnosis. Moreover, the same cellular populations were evaluated for their proliferative response to recombinant-human-(r-hu) IL-11 alone and combined with r-hu-IL-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and stem cell factor (SCE, c-kit ligand). The colony-forming ability of HL60, K562, KG1 cells and eight fresh AML cell populations was assessed by a clonogenic assay in methylcellulose. In eight additional AML cases the number of S-phase leukaemic cells induced by IL-11 was determined by the bromodeoxyuridine (BRDU) incorporation assay after 3 d of liquid culture. IL-11, as single cytokine, did not stimulate the colony formation of the three myeloid cell lines under serum-containing and serum-free conditions. In contrast, the proliferation of the leukaemic cells in response to IL-3, GM-CSF and SCF was enhanced by co-incubation with IL-11, and this effect was reversed in blocking experiments by the anti-IL-11 Moab. When tested on primary AML samples, IL-11 alone showed little, if any, proliferative activity. However, it increased the IL-3-dependent blast colony formation in eight out of eight cases and GM-CSF in seven cases. IL-11 also augmented synergistically the number of CFU-L stimulated by SCF in seven cases. A combination of three factors (1L-11 SCF and IL-3) yielded optimal colony formation. The BRDU studies showed the significant increase of AML cells in S-phase when IL-11 was combined with SCF, whereas the two CSF had no activity on their own. Positive interaction was also observed when IL-11 was added to IL-3 supplemented cultures in five out of eight cases tested. Reverse transcriptase-polymerase chain reaction amplification (RT-PCR) demonstrated the constitutive expression of IL-11 mRNA in all the cell lines and 11/12 AML samples studied at diagnosis. These results indicate that IL-11 is expressed in leukaemic myeloid cells and that their proliferation is regulated by the cytokine which acts as a synergistic factor
    corecore