111 research outputs found
Challenging old microbiological treasures for natural compound biosynthesis capacity
Strain collections are a treasure chest of numerous valuable and taxonomically validated bioresources. The Leibniz Institute DSMZ is one of the largest and most diverse microbial strain collections worldwide, with a long tradition of actinomycetes research. Actinomycetes, especially the genus Streptomyces, are renowned as prolific producers of antibiotics and many other bioactive natural products. In light of this, five Streptomyces strains, DSM 40971T, DSM 40484T, DSM 40713T, DSM 40976T, and DSM 40907T, which had been deposited a long time ago without comprehensive characterization, were the subject of polyphasic taxonomic studies and genome mining for natural compounds based on in vitro and in silico analyses. Phenotypic, genetic, and phylogenomic studies distinguished the strains from their closely related neighbors. The digital DNA–DNA hybridization and average nucleotide identity values between the five strains and their close, validly named species were below the threshold of 70% and 95%–96%, respectively, determined for prokaryotic species demarcation. Therefore, the five strains merit being considered as novel Streptomyces species, for which the names Streptomyces kutzneri sp. nov., Streptomyces stackebrandtii sp. nov., Streptomyces zähneri sp. nov., Streptomyces winkii sp. nov., and Streptomyces kroppenstedtii sp. nov. are proposed. Bioinformatics analysis of the genome sequences of the five strains revealed their genetic potential for the production of secondary metabolites, which helped identify the natural compounds cinerubin B from strain DSM 40484T and the phosphonate antibiotic phosphonoalamide from strain DSM 40907T and highlighted strain DSM 40976T as a candidate for regulator-guided gene cluster activation due to the abundance of numerous “Streptomyces antibiotic regulatory protein” (SARP) genes
Genetic engineering approaches for the fermentative production of phenylglycines
L-phenylglycine (L-Phg) is a rare non-proteinogenic amino acid, which only occurs in some natural compounds, such as the streptogramin antibiotics pristinamycin I and virginiamycin S or the bicyclic peptide antibiotic dityromycin. Industrially, more interesting than L-Phg is the enantiomeric D-Phg as it plays an important role in the fine chemical industry, where it is used as a precursor for the production of semisynthetic β-lactam antibiotics. Based on the natural L-Phg operon from Streptomyces pristinaespiralis and the stereo-inverting aminotransferase gene hpgAT from Pseudomonas putida, an artificial D-Phg operon was constructed. The natural L-Phg operon, as well as the artificial D-Phg operon, was heterologously expressed in different actinomycetal host strains, which led to the successful production of Phg. By rational genetic engineering of the optimal producer strains S. pristinaespiralis and Streptomyces lividans, Phg production could be improved significantly. Here, we report on the development of a synthetic biology-derived D-Phg pathway and the optimization of fermentative Phg production in actinomycetes by genetic engineering approaches. Our data illustrate a promising alternative for the production of Phgs.Deutsche ForschungsgemeinschaftBaden-Württemberg-StiftungDeutsches Zentrum für InfektionsforschungProjekt DEA
Functional Genomics Unique to Week 20 Post Wounding in the Deep Cone/Fat Dome of the Duroc/Yorkshire Porcine Model of Fibroproliferative Scarring
Background: Hypertrophic scar was first described over 100 years ago; PubMed has more than 1,000 references on the topic. Nevertheless prevention and treatment remains poor, because 1) there has been no validated animal model; 2) human scar tissue, which is impossible to obtain in a controlled manner, has been the only source for study; 3) tissues typically have been homogenized, mixing cell populations; and 4) gene-by-gene studies are incomplete.Methodology/Principal Findings: We have assembled a system that overcomes these barriers and permits the study of genome-wide gene expression in microanatomical locations, in shallow and deep partial-thickness wounds, and pigmented and non-pigmented skin, using the Duroc( pigmented fibroproliferative)/Yorkshire( non-pigmented non-fibroproliferative) porcine model. We used this system to obtain the differential transcriptome at 1, 2, 3, 12 and 20 weeks post wounding. It is not clear when fibroproliferation begins, but it is fully developed in humans and the Duroc breed at 20 weeks. Therefore we obtained the derivative functional genomics unique to 20 weeks post wounding. We also obtained long-term, forty-six week follow-up with the model.Conclusions/Significance: 1) the scars are still thick at forty-six weeks post wounding further validating the model. 2) the differential transcriptome provides new insights into the fibroproliferative process as several genes thought fundamental to fibroproliferation are absent and others differentially expressed are newly implicated. 3) the findings in the derivative functional genomics support old concepts, which further validates the model, and suggests new avenues for reductionist exploration. in the future, these findings will be searched for directed networks likely involved in cutaneous fibroproliferation. These clues may lead to a better understanding of the systems biology of cutaneous fibroproliferation, and ultimately prevention and treatment of hypertrophic scarring.The National Institute on Disability and Rehabilitation ResearchThe National Institutes of HealthThe Washington State Council of Fire Fighters Burn FoundationThe Northwest Burn FoundationUniv Washington, Dept Surg, Div Plast Surg, Seattle, WA 98195 USAIowa State Univ, Dept Anim Sci, Ames, IA USAUniv Washington, Dept Biostat, Seattle, WA 98195 USAMahidol Univ, Ramathibodi Hosp, Dept Surg, Bangkok 10700, ThailandUniv Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98195 USAUniversidade Federal de SĂŁo Paulo, Div Plast Surg, Dept Surg, SĂŁo Paulo, BrazilUniversidade Federal de SĂŁo Paulo, Div Plast Surg, Dept Surg, SĂŁo Paulo, BrazilThe National Institute on Disability and Rehabilitation Research: H133G050022The National Institutes of Health: 1R21GM074673The National Institutes of Health: 5U54GM062119-09Web of Scienc
Overview of fast particle experiments in the first MAST Upgrade experimental campaigns
MAST-U is equipped with on-axis and off-axis neutral beam injectors (NBI), and these external sources of super-Alfvénic deuterium fast-ions provide opportunities for studying a wide range of phenomena relevant to the physics of alpha-particles in burning plasmas. The MeV range D-D fusion product ions are also produced but are not confined. Simulations with the ASCOT code show that up to 20% of fast ions produced by NBI can be lost due to charge exchange (CX) with edge neutrals. Dedicated experiments employing low field side (LFS) gas fuelling show a significant drop in the measured neutron fluxes resulting from beam-plasma reactions, providing additional evidence of CX-induced fast-ion losses, similar to the ASCOT findings. Clear evidence of fast-ion redistribution and loss due to sawteeth (ST), fishbones (FB), long-lived modes (LLM), Toroidal Alfvén Eigenmodes (TAE), Edge Localised Modes (ELM) and neoclassical tearing modes (NTM) has been found in measurements with a Neutron Camera (NCU), a scintillator-based Fast-Ion Loss Detector (FILD), a Solid-State Neutral Particle Analyser (SSNPA) and a Fast-Ion Deuterium-α (FIDA) spectrometer. Unprecedented FILD measurements in the range of 1–2 MHz indicate that fast-ion losses can be also induced by the beam ion cyclotron resonance interaction with compressional or global Alfvén eigenmodes (CAEs or GAEs). These results show the wide variety of scenarios and the unique conditions in which fast ions can be studied in MAST-U, under conditions that are relevant for future devices like STEP or ITER
Recommended from our members
Minimum Information about a Biosynthetic Gene cluster
A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.Chemistry and Chemical Biolog
- …