121 research outputs found

    Probing the Nature of Short Swift Bursts via Deep INTEGRAL Monitoring of GRB 050925

    Full text link
    We present results from Swift, XMM-Newton, and deep INTEGRAL monitoring in the region of GRB 050925. This short Swift burst is a candidate for a newly discovered soft gamma-ray repeater (SGR) with the following observational burst properties: 1) galactic plane (b=-0.1 deg) localization, 2) 150 msec duration, and 3) a blackbody rather than a simple power-law spectral shape (with a significance level of 97%). We found two possible X-ray counterparts of GRB 050925 by comparing the X-ray images from Swift XRT and XMM-Newton. Both X-ray sources show the transient behavior with a power-law decay index shallower than -1. We found no hard X-ray emission nor any additional burst from the location of GRB 050925 in ~5 Ms of INTEGRAL data. We discuss about the three BATSE short bursts which might be associated with GRB 050925, based on their location and the duration. Assuming GRB 050925 is associated with the H II regions (W 58) at the galactic longitude of l=70 deg, we also discuss the source frame properties of GRB 050925.Comment: 13 pages, 13 figures, accepted for publication in ASR special issue on Neutron Stars and Gamma Ray Bursts, full resolution of Fig 5 is available at http://asd.gsfc.nasa.gov/Takanori.Sakamoto/GRB050925/integral_ibis_images.ep

    Improved Effective Potential in Curved Spacetime and Quantum Matter - Higher Derivative Gravity Theory

    Get PDF
    \noindent{\large\bf Abstract.} We develop a general formalism to study the renormalization group (RG) improved effective potential for renormalizable gauge theories ---including matter-R2R^2-gravity--- in curved spacetime. The result is given up to quadratic terms in curvature, and one-loop effective potentials may be easiliy obtained from it. As an example, we consider scalar QED, where dimensional transmutation in curved space and the phase structure of the potential (in particular, curvature-induced phase trnasitions), are discussed. For scalar QED with higher-derivative quantum gravity (QG), we examine the influence of QG on dimensional transmutation and calculate QG corrections to the scalar-to-vector mass ratio. The phase structure of the RG-improved effective potential is also studied in this case, and the values of the induced Newton and cosmological coupling constants at the critical point are estimated. Stability of the running scalar coupling in the Yukawa theory with conformally invariant higher-derivative QG, and in the Standard Model with the same addition, is numerically analyzed. We show that, in these models, QG tends to make the scalar sector less unstable.Comment: 23 pages, Oct 17 199

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    Relating the CMSSM and SUGRA models with GUT scale and Super-GUT scale Supersymmetry Breaking

    Full text link
    While the constrained minimal supersymmetric standard model (CMSSM) with universal gaugino masses, m_{1/2}, scalar masses, m_0, and A-terms, A_0, defined at some high energy scale (usually taken to be the GUT scale) is motivated by general features of supergravity models, it does not carry all of the constraints imposed by minimal supergravity (mSUGRA). In particular, the CMSSM does not impose a relation between the trilinear and bilinear soft supersymmetry breaking terms, B_0 = A_0 - m_0, nor does it impose the relation between the soft scalar masses and the gravitino mass, m_0 = m_{3/2}. As a consequence, tan(\beta) is computed given values of the other CMSSM input parameters. By considering a Giudice-Masiero (GM) extension to mSUGRA, one can introduce new parameters to the K\"ahler potential which are associated with the Higgs sector and recover many of the standard CMSSM predictions. However, depending on the value of A_0, one may have a gravitino or a neutralino dark matter candidate. We also consider the consequences of imposing the universality conditions above the GUT scale. This GM extension provides a natural UV completion for the CMSSM.Comment: 16 pages, 11 figures; added erratum correcting several equations and results in Sec.2, Sec.3 and 4 remain unaffected and conclusions unchange

    Antimatter Regions in the Early Universe and Big Bang Nucleosynthesis

    Get PDF
    We have studied big bang nucleosynthesis in the presence of regions of antimatter. Depending on the distance scale of the antimatter region, and thus the epoch of their annihilation, the amount of antimatter in the early universe is constrained by the observed abundances. Small regions, which annihilate after weak freezeout but before nucleosynthesis, lead to a reduction in the 4He yield, because of neutron annihilation. Large regions, which annihilate after nucleosynthesis, lead to an increased 3He yield. Deuterium production is also affected but not as much. The three most important production mechanisms of 3He are 1) photodisintegration of 4He by the annihilation radiation, 2) pbar-4He annihilation, and 3) nbar-4He annihilation by "secondary" antineutrons produced in anti-4He annihilation. Although pbar-4He annihilation produces more 3He than the secondary nbar-4He annihilation, the products of the latter survive later annihilation much better, since they are distributed further away from the annihilation zone.Comment: 15 pages, 9 figures. Minor changes to match the PRD versio

    Search for B⁺c decays to the pp‾π⁺ final state

    Get PDF
    A search for the decays of the B + c meson to pp-π + is performed for the first time using a data sample corresponding to an integrated luminosity of 3.0 fb -1 collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV. No signal is found and an upper limit, at 95% confidence level, is set, fcfu×B(B + c →ppπ + ) < 3.6×10-8 in the kinematic region m(pp) < 2.85 GeV/c2, p T (B) < 20 GeV/c and 2.0 < y(B) < 4.5, where B is the branching fraction and f c (f u ) is the fragmentation fraction of the b quark into a B c + (B + ) meson

    Measurement of W± and Z-boson production cross sections in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    See paper for full list of authors - 17 pages plus author list + cover pages (34 pages total), 5 figures, 3 tables, submitted to Phys. Lett. B, All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-03/International audienceMeasurements of the W±±νW^{\pm} \rightarrow \ell^{\pm} \nu and Z+Z \rightarrow \ell^+ \ell^- production cross sections (where ±=e±,μ±\ell^{\pm}=e^{\pm},\mu^{\pm}) in proton-proton collisions at s=13\sqrt{s}=13 TeV are presented using data recorded by the ATLAS experiment at the Large Hadron Collider, corresponding to a total integrated luminosity of 81 pb1^{-1}. The total inclusive W±W^{\pm}-boson production cross sections times the single-lepton-flavour branching ratios are σW+tot=11.78±0.02(stat)±0.32(sys)±0.59(lumi)\sigma_{W^+}^{tot}= 11.78 \pm 0.02 (stat) \pm 0.32 (sys) \pm 0.59 (lumi) nb and σWtot=8.75±0.02(stat)±0.24(sys)±0.44(lumi)\sigma_{W^-}^{tot} = 8.75 \pm 0.02 (stat) \pm 0.24 (sys) \pm 0.44 (lumi) nb for W+W^+ and WW^-, respectively. The total inclusive ZZ-boson production cross section times leptonic branching ratio, within the invariant mass window 66<m<11666 < m_{\ell\ell} < 116 GeV, is σZtot=1.97±0.01(stat)±0.04(sys)±0.10(lumi)\sigma_{Z}^{tot} = 1.97 \pm 0.01 (stat) \pm 0.04 (sys) \pm 0.10 (lumi) nb. The W+W^+, WW^-, and ZZ-boson production cross sections and cross-section ratios within a fiducial region defined by the detector acceptance are also measured. The cross-section ratios benefit from significant cancellation of experimental uncertainties, resulting in σW+fid/σWfid=1.295±0.003(stat)±0.010(sys)\sigma_{W^+}^{fid}/\sigma_{W^-}^{fid} = 1.295 \pm 0.003 (stat) \pm 0.010 (sys) and σW±fid/σZfid=10.31±0.04(stat)±0.20(sys)\sigma_{W^{\pm}}^{fid}/\sigma_{Z}^{fid} = 10.31 \pm 0.04 (stat) \pm 0.20 (sys). Theoretical predictions, based on calculations accurate to next-to-next-to-leading order for quantum chromodynamics and next-to-leading order for electroweak processes and which employ different parton distribution function sets, are compared to these measurements

    Measurement of the top quark mass in the tt→ dilepton channel from √s = 8 TeV ATLAS data

    Get PDF
    The top quark mass is measured in the tt¯ → dilepton channel (lepton = e,μ) using ATLAS data recorded in the year 2012 at the LHC. The data were taken at a proton proton centre-of-mass energy of √s = 8 TeV and correspond to an integrated luminosity of about 20.2 fb−1. Exploiting the template method, and using the distribution of invariant masses of lepton–b-jet pairs, the top quark mass is measured to be mtop = 172.99±0.41 (stat) ±0.74 (syst) GeV, with a total uncertainty of 0.84 GeV. Finally, a combination with previous ATLAS mtop measurements from √s = 7 TeV data in the tt¯ → dilepton and tt¯ → lepton + jets channels results in mtop = 172.84±0.34 (stat)±0.61 (syst) GeV, with a total uncertainty of 0.70 GeV

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore