40 research outputs found

    Dissemination and persistence of extended-spectrum cephalosporin- resistance encoding IncI1-blaCTXM-1 plasmid among Escherichia coli in pigs

    Get PDF
    This study investigated the ecology, epidemiology and plasmid characteristics of extended-spectrum cephalosporin (ESC)-resistant E. coli in healthy pigs over a period of 4 years (2013–2016) following the withdrawal of ESCs. High carriage rates of ESC-resistant E. coli were demonstrated in 2013 (86.6%) and 2014 (83.3%), compared to 2015 (22%) and 2016 (8.5%). ESC resistance identified among E. coli isolates was attributed to the carriage of an IncI1 ST-3 plasmid (pCTXM1-MU2) encoding blaCTXM-1. Genomic characterisation of selected E. coli isolates (n = 61) identified plasmid movement into multiple commensal E. coli (n = 22 STs). Major STs included ST10, ST5440, ST453, ST2514 and ST23. A subset of the isolates belong to the atypical enteropathogenic E. coli (aEPEC) pathotype that harboured multiple LEE pathogenic islands. pCTXM1-MU2 was similar (99% nt identity) to IncI1-ST3 plasmids reported from Europe, encoded resistance to aminoglycosides, sulphonamides and trimethoprim, and carried colicin Ib. pCTXM1-MU2 appears to be highly stable and readily transferable. This study demonstrates that ESC resistance may persist for a protracted period following removal of direct selection pressure, resulting in the emergence of ESC-resistance in both commensal E. coli and aEPEC isolates of potential significance to human and animal health.This study was funded by the DVM clinical research programme, University of Adelaide and Small Grant Scheme of School of Veterinary Life Sciences, Murdoch University

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    No Ph.D. Required: Remote Telescopes Reaching a Wider Audience

    No full text
    Remote telescopes are currently being used in many formal and informal educational settings, from museums to worldwide collaborations. The speed and accessibility of the Internet has made remote telescope technology a reality outside of research labs. The mechanisms, interfaces and goals vary between programs, but all use cutting edge technology to deepen public awareness of astronomy research. The National Optical Astronomy Observatory, RBSE program, MicroObservatory, Las Cumbres Observatory Global Telescope Network, Slooh and Hands-On Universe discuss in this paper how they are leveraging the newest technologies to bring opportunities once reserved for professional researchers into classrooms, museums, and living rooms. By partnering with universities, government agencies and commercial enterprises, astronomy educators are giving the public access to advanced telescopes, allowing real scientific discovery to occur

    Vector-free intracellular delivery by reversible permeabilization

    Get PDF
    Despite advances in intracellular delivery technologies, efficient methods are still required that are vector-free, can address a wide range of cargo types and can be applied to cells that are difficult to transfect whilst maintaining cell viability. We have developed a novel vector-free method that uses reversible permeabilization to achieve rapid intracellular delivery of cargos with varying composition, properties and size. A permeabilizing delivery solution was developed that contains a low level of ethanol as the permeabilizing agent. Reversal of cell permeabilization is achieved by temporally and volumetrically controlling the contact of the target cells with this solution. Cells are seeded in conventional multi-well plates. Following removal of the supernatant, the cargo is mixed with the delivery solution and applied directly to the cells using an atomizer. After a short incubation period, permeabilization is halted by incubating the cells in a phosphate buffer saline solution that dilutes the ethanol and is non-toxic to the permeabilized cells. Normal culture medium is then added. The procedure lasts less than 5 min. With this method, proteins, mRNA, plasmid DNA and other molecules have been delivered to a variety of cell types, including primary cells, with low toxicity and cargo functionality has been confirmed in proof-of-principle studies. Co-delivery of different cargo types has also been demonstrated. Importantly, delivery occurs by diffusion directly into the cytoplasm in an endocytic-independent manner. Unlike some other vector-free methods, adherent cells are addressed in situ without the need for detachment from their substratum. The method has also been adapted to address suspension cells. This delivery method is gentle yet highly reproducible, compatible with high throughput and automated cell-based assays and has the potential to enable a broad range of research, drug discovery and clinical applications
    corecore