8,641 research outputs found

    Time-resolved multicolour photometry of bright B-type variable stars in Scorpius

    Full text link
    The first two of a total of six nano-satellites that will constitute the BRITE-Constellation space photometry mission have recently been launched successfully. In preparation for this project, we carried out time-resolved colour photometry in a field that is an excellent candidate for BRITE measurements from space. We acquired 117 h of Stromgren uvy data during 19 nights. Our targets comprised the Beta Cephei stars Kappa and Lambda Sco, the eclipsing binary Mu 1 Sco, and the variable super/hypergiant Zeta 1 Sco. For Kappa Sco, a photometric mode identification in combination with results from the spectroscopic literature suggests a dominant (l, m) = (1, -1) Beta Cephei-type pulsation mode of the primary star. The longer period of the star may be a rotational variation or a g-mode pulsation. For Lambda Sco, we recover the known dominant Beta Cephei pulsation, a longer-period variation, and observed part of an eclipse. Lack of ultraviolet data precludes mode identification for this star. We noticed that the spectroscopic orbital ephemeris of the closer pair in this triple system is inconsistent with eclipse timings and propose a refined value for the orbital period of the closer pair of 5.95189 +/- 0.00003 d. We also argue that the components of the Lambda Sco system are some 30% more massive than previously thought. The binary light curve solution of Mu 1 Sco requires inclusion of the irradiation effect to explain the u light curve, and the system could show additional low amplitude variations on top of the orbital light changes. Zeta 1 Sco shows long-term variability on a time scale of at least two weeks that we prefer to interpret in terms of a variable wind or strange mode pulsations.Comment: 7 pages, 7 figures, 3 Tables, accepted by A&

    Asteroseismology and evolution of EHB stars

    Full text link
    The properties of the Extreme Horizontal Branch stars are quite well understood, but much uncertainty surrounds the many paths that bring a star to this peculiar configuration. Asteroseismology of pulsating EHB stars has been performed on a number of objects, bringing us to the stage where comparisons of the inferred properties with evolutionary models becomes feasible. In this review I outline our current understanding of the formation and evolution of these stars, with emphasis on recent progress. The aim is to show how the physical parameters derived by asteroseismology can enable the discrimination between different evolutionary models.Comment: 13 pages, 6 figures, invited review to appear in Communications in Asteroseismology vol.159, "Proceedings of the JENAM 2008 Symposium No 4: Asteroseismology and Stellar Evolution
    • …