30 research outputs found
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Is Social Network Diversity Associated with Tooth Loss among Older Japanese Adults?
Background: We sought to examine social network diversity as a potential determinant of oral health, considering size and contact frequency of the social network and oral health behaviors. Methods: Our cross-sectional study was based on data from the 2010 Japan Gerontological Evaluation Study. Data from 19,756 community-dwelling individuals aged 65 years or older were analyzed. We inquired about diversity of friendships based on seven types of friends. Ordered logistic regression models were developed to determine the association between the diversity of social networks and number of teeth (categorized as â„20, 10â19, 1â9, and 0). Results: Of the participants, 54.1% were women (mean age, 73.9 years; standard deviation, 6.2). The proportion of respondents with â„20 teeth was 34.1%. After adjusting for age, sex, socioeconomic status (income, education, and occupation), marital status, health status (diabetes and mental health), and size and contact frequency of the social network, an increase in the diversity of social networks was significantly associated with having more teeth (odds ratio = 1.08; 95% confidence interval, 1.04â1.11). Even adjusted for oral health behaviors (smoking, curative/preventive dental care access, use of dental floss/fluoride toothpaste), significant association was still observed (odds ratio = 1.05 (95% confidence interval, 1.02â1.08)). Conclusion: Social connectedness among people from diverse backgrounds may increase information channels and promote the diffusion of oral health behaviors and prevent tooth loss