265 research outputs found

    Implementation of a Differential Flatness Based Controller on an Open Channel Using a SCADA System

    Get PDF
    International audienceWith a population of more than 6 billion people, food production from agriculture must be raised to meet increasing demand. While irrigated agriculture provides 40% of the total food production, it represents 80% of the freshwater consumption worldwide. In summer and drought conditions, efficient management of scarce water resources becomes crucial. The majority of irrigation canals are managed manually, however, with large water losses leading to low water efficiency. This article focuses on the development of algorithms that could contribute to more efficient management of irrigation canals that convey water from a source, generally a dam or reservoir located upstream, to water users. We also describe the implementation of an algorithm for real-time irrigation operation using a supervision, control, and data acquisition (SCADA) system with an automatic centralized controller. Irrigation canals can be viewed and modeled as delay systems since it takes time for the water released at the upstream end to reach the user located downstream. We thus present an open-loop controller that can deliver water at a given location at a specified time. The development of this controller requires a method for inverting the equations that describe the dynamics of the canal in order to parameterize the controlled input as a function of the desired output. The Saint-Venant equations [1] are widely used to describe water discharge in a canal. Since these equations are not easy to invert, we consider a simplified model, called the Hayami model. We then use differential flatness to invert the dynamics of the system and to design an open-loop controller

    Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis.

    Get PDF
    BACKGROUND: RPE65 is specifically expressed in the retinal pigment epithelium and is essential for the recycling of 11-cis-retinal, the chromophore of rod and cone opsins. In humans, mutations in RPE65 lead to Leber congenital amaurosis or early-onset retinal dystrophy, a severe form of retinitis pigmentosa. The proof of feasibility of gene therapy for RPE65 deficiency has already been established in a dog model of Leber congenital amaurosis, but rescue of the cone function, although crucial for human high-acuity vision, has never been strictly proven. In Rpe65 knockout mice, photoreceptors show a drastically reduced light sensitivity and are subject to degeneration, the cone photoreceptors being lost at early stages of the disease. In the present study, we address the question of whether application of a lentiviral vector expressing the Rpe65 mouse cDNA prevents cone degeneration and restores cone function in Rpe65 knockout mice. METHODS AND FINDINGS: Subretinal injection of the vector in Rpe65-deficient mice led to sustained expression of Rpe65 in the retinal pigment epithelium. Electroretinogram recordings showed that Rpe65 gene transfer restored retinal function to a near-normal pattern. We performed histological analyses using cone-specific markers and demonstrated that Rpe65 gene transfer completely prevented cone degeneration until at least four months, an age at which almost all cones have degenerated in the untreated Rpe65-deficient mouse. We established an algorithm that allows prediction of the cone-rescue area as a function of transgene expression, which should be a useful tool for future clinical trials. Finally, in mice deficient for both RPE65 and rod transducin, Rpe65 gene transfer restored cone function when applied at an early stage of the disease. CONCLUSIONS: By demonstrating that lentivirus-mediated Rpe65 gene transfer protects and restores the function of cones in the Rpe65(-/-) mouse, this study reinforces the therapeutic value of gene therapy for RPE65 deficiencies, suggests a cone-preserving treatment for the retina, and evaluates a potentially effective viral vector for this purpose

    Ophthalmic Artery Chemosurgery for Less Advanced Intraocular Retinoblastoma: Five Year Review

    Get PDF
    BACKGROUND: Ophthalmic artery chemosurgery (OAC) for retinoblastoma was introduced by us 5 years ago for advanced intraocular retinoblastoma. Because the success was higher than with existing alternatives and systemic side effects limited we have now treated less advanced intraocular retinoblastoma (Reese-Ellsworth (RE) I-III and International Classification Retinoblastoma (ICRB) B and C). METHODOLOGY/PRINCIPAL FINDINGS: Retrospective review of 5 year experience in eyes with Reese Ellsworth (Table 1) I (7 eyes), II (6 eyes) or III (6 eyes) and/or International Classification (Table 2) B (19 eyes) and C (11 eyes) treated with OAC (melphalan with or without topotecan) introduced directly into the ophthalmic artery. Patient survival was 100%. Ocular event-free survival was 100% for Reese-Ellsworth Groups I, II and III (and 96% for ICRB B and C) at a median of 16 months follow-up. One ICRB Group C (Reese-Ellsworth Vb) eye could not be treated on the second attempt for technical reasons and was therefore enucleated. No patient required a port and only one patient required transfusion of blood products. The electroretinogram (ERG) was unchanged or improved in 14/19 eyes. CONCLUSIONS/SIGNIFICANCE: Ophthalmic artery chemosurgery for retinoblastoma that was Reese-Ellsworth I, II and III (or International Classification B or C) was associated with high success (100% of treatable eyes were retained) and limited toxicity with results that equal or exceed conventional therapy with less toxicity

    R5-SHIV Induces Multiple Defects in T Cell Function during Early Infection of Rhesus Macaques Including Accumulation of T Reg Cells in Lymph Nodes

    Get PDF
    Background: HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues. Methods: Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation. Results/Conclusions: We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection

    Breeding for increased nitrogen-use efficiency: a review for wheat (T. aestivum L.)

    Get PDF
    Nitrogen fertilizer is the most used nutrient source in modern agriculture and represents significant environmental and production costs. In the meantime, the demand for grain increases and production per area has to increase as new cultivated areas are scarce. In this context, breeding for an efficient use of nitrogen became a major objective. In wheat, nitrogen is required to maintain a photosynthetically active canopy ensuring grain yield and to produce grain storage proteins that are generally needed to maintain a high end-use quality. This review presents current knowledge of physiological, metabolic and genetic factors influencing nitrogen uptake and utilization in the context of different nitrogen management systems. This includes the role of root system and its interactions with microorganisms, nitrate assimilation and its relationship with photosynthesis as postanthesis remobilization and nitrogen partitioning. Regarding nitrogen-use efficiency complexity, several physiological avenues for increasing it were discussed and their phenotyping methods were reviewed. Phenotypic and molecular breeding strategies were also reviewed and discussed regarding nitrogen regimes and genetic diversity

    Méthodes d'identification des minéraux des argiles. Cas des argiles céramiques

    No full text
    Munier Pierre. Méthodes d'identification des minéraux des argiles. Cas des argiles céramiques . In: Groupe Français des argiles. Compte rendu des réunions d'études. Tome 3, 1951. pp. 61-78

    Assembly and alignment in cellulose nanomaterial-based composite dispersions and thermally insulating foams

    No full text
    Research on nanoparticles extracted from renewable and highly available sources is motivated by both the development of functional nanomaterials and the drive to replace widely used materials based on fossil resources. In particular, cellulose, in the form of cellulose nanomaterials (CNM), has attracted increased attention for the development of sustainable and high performance products, thanks to properties that include high specific mechanical strength, chemical versatility and anisotropic thermal conductivity. Ice-templated CNM foams display super-insulating properties across the direction of the aligned particles (radially) and could potentially compete with fossil-based insulation materials. This thesis investigates the alignment and co-assembly of widely available inorganic nanomaterials with CNM in aqueous dispersions, and the relative importance of phonon scattering in anisotropic thermally insulating composite foams. Time resolved small-angle X-ray scattering (SAXS) experiments have been conducted to study assembly and alignment in composite aqueous dispersions containing cellulose nanocrystals (CNC) and montmorillonite (MNT) clay nanoplatelets. The co-assembly of CNC and MNT in slowly evaporating levitating droplets was dominated by the interactions between the dispersed CNC particles but MNT promoted gelation and assembly at lower total volume fractions than in CNC-only droplets. Combining SAXS with rotational rheology showed that shear induced a high degree of orientation of CNC in both the CNC-only and mixed CNC:MNT dispersions. The shear-induced CNC orientation relaxed quickly in the CNC-only dispersion but relaxation was strongly retarded and partially inhibited in the mixed CNC:MNT dispersions. Analysis of previous works suggests that anisotropic and multiscale CNM-based foams with a high number of interfaces can favour heat dissipation by phonon scattering within the foam walls. Measurements and theoretical estimates of the thermal conductivities of CNC-only ice-templated foams over a wide range of densities confirmed the importance of phonon scattering to achieve super-insulating radial thermal conductivity values.  Ice-templated CNC:MNT composite foams displayed a lower radial thermal conductivity compared to CNC-only foams, which suggests that the introduction of heterogeneous interfaces between the biopolymer and the clay enhanced the dissipation of heat through phonon scattering. Composite ice-templated foams of colloidal silica and TEMPO-oxidised cellulose nanofibrils (TCNF) were significantly stronger under mechanical compression and less sensitive to moisture uptake than TCNF-only foams, and maintained radial thermal conductivities that are comparable with widely used thermally insulating materials. These examples could pave the way towards the development of super-insulating, strong and moisture-resilient CNM-based composite foams
    corecore