4,754 research outputs found

    General Theory of Topological Explanations and Explanatory Asymmetry

    Get PDF
    In this paper, I present a general theory of topological explanations, and illustrate its fruitfulness by showing how it accounts for explanatory asymmetry. My argument is developed in three steps. In the first step, I show what it is for some topological property A to explain some physical or dynamical property B. Based on that, I derive three key criteria of successful topological explanations: a criterion concerning the facticity of topological explanations, i.e. what makes it true of a particular system; a criterion for describing counterfactual dependencies in two explanatory modes, i.e. the vertical and the horizontal; and, finally, a third perspectival one that tells us when to use the vertical and when to use the horizontal mode. In the second step, I show how this general theory of topological explanations accounts for explanatory asymmetry in both the vertical and horizontal explanatory modes. Finally, in the third step, I argue that this theory is universally applicable across biological sciences, which helps to unify essential concepts of biological networks

    The Turing Test and the Zombie Argument

    Get PDF
    In this paper I shall try to put some implications concerning the Turing's test and the so-called Zombie arguments into the context of philosophy of mind. My intention is not to compose a review of relevant concepts, but to discuss central problems, which originate from the Turing's test - as a paradigm of computational theory of mind - with the arguments, which refute sustainability of this thesis. In the first section (Section I), I expose the basic computationalist presuppositions; by examining the premises of the Turing Test (TT) I argue that the TT, as a functionalist paradigm concept, underlies the computational theory of mind. I treat computationalism as a thesis that defines the human cognitive system as a physical, symbolic and semantic system, in such a manner that the description of its physical states is isomorphic with the description of its symbolic conditions, so that this isomorphism is semantically interpretable. In the second section (Section II), I discuss the Zombie arguments, and the epistemological-modal problems connected with them, which refute sustainability of computationalism. The proponents of the Zombie arguments build their attack on the computationalism on the basis of thought experiments with creatures behaviorally, functionally and physically indistinguishable from human beings, though these creatures do not have phenomenal experiences. According to the consequences of these thought experiments - if zombies are possible, then, the computationalism doesn't offer a satisfying explanation of consciousness. I compare my thesis from Section 1, with recent versions of Zombie arguments, which claim that computationalism fails to explain qualitative phenomenal experience. I conclude that despite the weaknesses of computationalism, which are made obvious by zombie-arguments, these arguments are not the last word when it comes to explanatory force of computationalism

    Composition principles for generalized almost periodic functions

    Get PDF
    In this paper, we consider composition principles for generalized almost periodic functions. We prove several new composition principles for the classes of (asymptotically) Stepanov pp-almost periodic functions and (asymptotically, equi-)Weyl pp-almost periodic functions, where 1≤p<∞,1\leq p<\infty , and explain how we can use some of them in the qualitative analysis of solutions for certain classes of abstract semilinear Cauchy inclusions in Banach spaces
    • …
    corecore