30 research outputs found

    Computation of Electrical Conductivities of Aqueous Electrolyte Solutions: Two Surfaces , One Property

    Full text link
    In this work, we have computed electrical conductivities at ambient conditions of aqueous NaCl and KCl solutions by using the Einstein-Helfand equation. Common force fields (charge q = 1 e) do not reproduce the experimental values of electrical conductivities, viscosities and diffusion coefficients. Recently, we proposed the idea of using different charges to describe the Potential Energy Surface (PES) and the Dipole Moment Surface (DMS). In this work, we implement this concept. The equilibrium trajectories required to evaluate electrical conductivities (within linear response theory) were obtained by using scaled charges (with the value q = 0.75 e ) to describe the PES. The potential parameters were those of the Madrid-Transport force field, which describe accurately viscosities and diffusion coefficients of these ionic solutions. However, integer charges were used to compute the conductivities (thus describing the DMS). The basic idea is that although the scaled charge describes the ion-water interaction better, the integer charge reflects the value of the charge that is transported due to the electric field. The agreement obtained with experiments is excellent, as for the first time electrical conductivities (and the other transport properties) of NaCl and KCl electrolyte solutions are described with high accuracy for the whole concentration range up to their solubility limit. Finally, we propose an easy way to obtain a rough estimate of the actual electrical conductivity of the potential model under consideration using the approximate Nernst-Einstein equation, which neglects correlations between different ions

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Multiple Free Energy Calculations from Single State Point Continuous Fractional Component Monte Carlo Simulation Using Umbrella Sampling

    Get PDF
    We introduce an alternative method to perform free energy calculations for mixtures at multiple temperatures and pressures from a single simulation, by combining umbrella sampling and the continuous fractional component Monte Carlo method. One can perform a simulation of a mixture at a certain pressure and temperature and accurately compute the chemical potential at other pressures and temperatures close to the simulation conditions. This method has the following advantages: (1) Accurate estimates of the chemical potential as a function of pressure and temperature are obtained from a single state simulation without additional postprocessing. This can potentially reduce the number of simulations of a system for free energy calculations for a specific temperature and/or pressure range. (2) Partial molar volumes and enthalpies are obtained directly from the estimated chemical potentials. We tested our method for a Lennard-Jones system, aqueous mixtures of methanol at T = 298 K and P = 1 bar, and a mixture of ammonia, nitrogen, and hydrogen at T = 573 K and P = 800 bar. For pure methanol (N = 410 molecules), we observed that the estimated chemical potentials from umbrella sampling are in excellent agreement with the reference values obtained from independent simulations, for ΔT = ±15 K and ΔP = 100 bar (with respect to the simulated system). For larger systems, this range becomes smaller because the relative fluctuations of energy and volume become smaller. Without sufficient overlap, the performance of the method will become poor especially for nonlinear variations of the chemical potential.Engineering Thermodynamic

    Recent advances in the continuous fractional component Monte Carlo methodology

    Get PDF
    In this paper, we review recent advances in the Continuous Fractional Component Monte Carlo (CFCMC) methodology and present a historic overview of the most important developments that have led to this method. The CFCMC method has gained attention for Monte Carlo simulations of adsorption at high loading, and phase and reaction equilibria of dense systems. It has recently been extended to reactive systems. The main features of the CFCMC method are: (1) Increased molecule exchange efficiency between different phases in single and multicomponent (reactive) systems, which improves the efficiency and accuracy of phase equilibria simulations at high densities; (2) Direct calculation of the chemical potential from a single simulation; (3) Direct calculation of partial molar properties from a single simulation. The developed simulation techniques are incorporated in the open-source molecular simulation software Brick-CFCMC.Engineering Thermodynamic

    Transient modelling of a multi-cell alkaline electrolyzer for gas crossover and safe system operation

    No full text
    Due to the intermittency of renewable energy sources, alkaline water electrolyzers are typically operated at partial load compared to the nominal design value. It is well-known that gas crossover is dominant at low current densities leading to higher anodic hydrogen content and higher cathodic oxygen content in the separator tanks. High anodic hydrogen content is tantamount to loss of product hydrogen which results in an explosive atmosphere in the gas phase if the volumetric hydrogen content in oxygen exceeds 4%. We have developed a transient model of a multi-cell stack which can describe the operation of the electrolyzer with mixed electrolyte flows (anolyte and catholyte), separated flows, or a combination thereof (dynamic switching). This is a major extension of the steady-state model developed by Haug et al. (International Journal of Hydrogen Energy, 2017, 42, 15,689–15707). In sharp contrast to the steady-state model by Haug et al., the transient model can calculate the gas crossover as the operating conditions (e.g. electrolyte flow cycles) dynamically change in time. Depending on the size of the stack and the separator tanks, the model estimates different rates for impurities to build up. The transient model is validated using independent experimental results by Haug et al. and Brauns et al. (Electrochimica Acta, 2022, 404, 139,715) The results show that the dynamic model can follow experimental results for fluctuating current densities for a period of several days. We found that the dynamic response and transition time to steady state depend significantly on the geometrical volume of the gas separators with respect to the single-cell stack. For a multi-cell stack, we find that the impurities build-up faster when increasing the number of cells in the stack. This model serves as a tool for sizing and process management of the electrolyzer system and the separator tanks especially with respect to explosion safety.Engineering ThermodynamicsProcess and Energ

    Effect of Water Content on Thermodynamic Properties of Compressed Hydrogen

    Get PDF
    Force field-based molecular simulations were used to calculate thermal expansivities, heat capacities, and Joule-Thomson coefficients of binary (standard) hydrogen-water mixtures for temperatures between 366.15 and 423.15 K and pressures between 50 and 1000 bar. The mole fraction of water in saturated hydrogen-water mixtures in the gas phase ranges from 0.004 to 0.138. The same properties were calculated for pure hydrogen at 323.15 K and pressures between 100 and 1000 bar. Simulations were performed using the TIP3P and a modified TIP4P force field for water and the Marx, Vrabec, Cracknell, Buch, and Hirschfelder force fields for hydrogen. The vapor-liquid equilibria of hydrogen-water mixtures were calculated along the melting line of ice Ih, corresponding to temperatures between 264.21 and 272.4 K, using the TIP3P force field for water and the Marx force field for hydrogen. In this temperature range, the solubilities and the chemical potentials of hydrogen and water were obtained. Based on the computed solubility data of hydrogen in water, the freezing-point depression of water was computed ranging from 264.21 to 272.4 K. The modified TIP4P and Marx force fields were used to improve the solubility calculations of hydrogen-water mixtures reported in our previous study [ Rahbari, A.;et al. J. Chem. Eng. Data 2019, 64, 4103-4115 ] for temperatures between 323 and 423 K and pressures ranging from 100 to 1000 bar. The chemical potentials of ice Ih were calculated as a function of pressure between 100 and 1000 bar, along the melting line for temperatures between 264.21 and 272.4 K, using the IAPWS equation of state for ice Ih. We show that at low pressures, the presence of water has a large effect on the thermodynamic properties of compressed hydrogen. Our conclusions may have consequences for the energetics of a hydrogen refueling station using electrochemical hydrogen compressors.</p

    A New Force Field for OH<sup>-</sup>for Computing Thermodynamic and Transport Properties of H<sub>2</sub>and O<sub>2</sub>in Aqueous NaOH and KOH Solutions

    No full text
    The thermophysical properties of aqueous electrolyte solutions are of interest for applications such as water electrolyzers and fuel cells. Molecular dynamics (MD) and continuous fractional component Monte Carlo (CFCMC) simulations are used to calculate densities, transport properties (i.e., self-diffusivities and dynamic viscosities), and solubilities of H2 and O2 in aqueous sodium and potassium hydroxide (NaOH and KOH) solutions for a wide electrolyte concentration range (0-8 mol/kg). Simulations are carried out for a temperature and pressure range of 298-353 K and 1-100 bar, respectively. The TIP4P/2005 water model is used in combination with a newly parametrized OH- force field for NaOH and KOH. The computed dynamic viscosities at 298 K for NaOH and KOH solutions are within 5% from the reported experimental data up to an electrolyte concentration of 6 mol/kg. For most of the thermodynamic conditions (especially at high concentrations, pressures, and temperatures) experimental data are largely lacking. We present an extensive collection of new data and engineering equations for H2 and O2 self-diffusivities and solubilities in NaOH and KOH solutions, which can be used for process design and optimization of efficient alkaline electrolyzers and fuel cells. Engineering ThermodynamicsProcess and EnergyTeam Poulumi De

    Modeling the phase equilibria of asymmetric hydrocarbon mixtures using molecular simulation and equations of state

    No full text
    Monte Carlo simulation (MC) is combined with equations of state (EoS) to develop a methodology for the calculation of the vapor–liquid equilibrium (VLE) of multicomponent hydrocarbon mixtures with high asymmetry. MC simulations are used for the calculation of the VLE of binary methane mixtures with long n-alkanes, for a wide range of temperatures and pressures, to obtain sufficient VLE data for the consistent fitting of binary interaction parameters (BIPs) for the EoS. The Soave-Redlich-Kwong (SRK), Peng-Robinson (PR), and Perturbed Chain - Statistical Associating Fluid Theory (PC-SAFT) EoS are considered. The ability of each EoS to correlate the VLE data is assessed and the selected ones are used to predict the VLE of multicomponent gas condensate mixtures. MC simulations proved to be very accurate in predicting the VLE in all conditions and mixtures considered. The BIPs regressed from the simulation dataset lead to equally accurate modeling results for multicomponent mixtures, compared to those regressed from experimental data.Accepted Author ManuscriptEngineering Thermodynamic
    corecore