56 research outputs found

    In-home solid fuel use and cardiovascular disease: a cross-sectional analysis of the Shanghai Putuo study

    Get PDF
    Background: Although recent research evidence suggests an association between household air pollution from solid fuel use, such as coal or biomass, and cardiovascular events such as hypertension, little epidemiologic data are available concerning such exposure effects on cardiovascular endpoints other than hypertension. We explored the association between in-home solid fuel use and self-reported diagnoses of cardiovascular endpoints, such as hypertension, coronary heart disease (CHD), stroke, and diabetes. Methods: We analyzed 14,068 Chinese adults, aged 18 years and older. Odds ratios (OR) and the corresponding 95% confidence intervals (CI) were estimated using logistic regression models for the risk of each outcome after adjusting for potential confounders. Results: The use of solid fuel in home was significantly associated with an increased risk for hypertension (OR 1.70, 95% CI 1.40 to 2.07), CHD (OR 2.58, 95% CI 1.53 to 4.32), and diabetes (OR 2.48, 95% CI 1.59 to 3.86), after adjusting for potential confounders. Compared with individuals in the lowest tertile of the duration of solid fuel exposure, those in the highest tertile of the duration of solid fuel exposure had an increased odds of hypertension (OR 1.73, 95% CI 1.45 to 2.06), stroke (OR 1.87, 95% CI 1.03 to 3.38), and diabetes (OR 3.18, 95% CI 2.11 to 4.78). Conclusions: Our data suggest that in-home solid fuel exposure maybe associated with increased risk for hypertension, CHD, stroke, and diabetes in the Chinese adult population. Further large-scale longitudinal studies are warranted to confirm these findings

    Tonic excitation or inhibition is set by GABAA conductance in hippocampal interneurons

    Get PDF
    Inhibition is a physiological process that decreases the probability of a neuron generating an action potential. The two main mechanisms that have been proposed for inhibition are hyperpolarization and shunting. Shunting results from increased membrane conductance, and it reduces the neuron-firing probability. Here we show that ambient GABA, the main inhibitory neurotransmitter in the brain, can excite adult hippocampal interneurons. In these cells, the GABAA current reversal potential is depolarizing, making baseline tonic GABAA conductance excitatory. Increasing the tonic conductance enhances shunting-mediated inhibition, which eventually overpowers the excitation. Such a biphasic change in interneuron firing leads to corresponding changes in the GABAA-mediated synaptic signalling. The described phenomenon suggests that the excitatory or inhibitory actions of the current are set not only by the reversal potential, but also by the conductance

    Stochastic backgrounds of relic gravitons: a theoretical appraisal

    Get PDF
    Stochastic backgrounds or relic gravitons, if ever detected, will constitute a prima facie evidence of physical processes taking place during the earliest stages of the evolution of the plasma. The essentials of the stochastic backgrounds of relic gravitons are hereby introduced and reviewed. The pivotal observables customarily employed to infer the properties of the relic gravitons are discussed both in the framework of the Λ\LambdaCDM paradigm as well as in neighboring contexts. The complementarity between experiments measuring the polarization of the Cosmic Microwave Background (such as, for instance, WMAP, Capmap, Quad, Cbi, just to mention a few) and wide band interferometers (e.g. Virgo, Ligo, Geo, Tama) is emphasized. While the analysis of the microwave sky strongly constrains the low-frequency tail of the relic graviton spectrum, wide-band detectors are sensitive to much higher frequencies where the spectral energy density depends chiefly upon the (poorly known) rate of post-inflationary expansion.Comment: 94 pages, 32 figure

    Gravitational Wave Astronomy: in Anticipation of First Sources to be Detected

    Get PDF
    The first generation of long-baseline laser interferometric detectors of gravitational waves will start collecting data in 2001-2003. We carefully analyse their planned performance and compare it with the expected strengths of astrophysical sources. The scientific importance of the anticipated discovery of various gravitatinal wave signals and the reliability of theoretical predictions are taken into account in our analysis. We try to be conservative both in evaluating the theoretical uncertainties about a source and the prospects of its detection. After having considered many possible sources, we place our emphasis on (1) inspiraling binaries consisting of stellar mass black holes and (2) relic gravitational waves. We draw the conclusion that inspiraling binary black holes are likely to be detected first by the initial ground-based interferometers. We estimate that the initial interferometers will see 2-3 events per year from black hole binaries with component masses 10-15M_\odot, with a signal-to-noise ratio of around 2-3, in each of a network of detectors consisting of GEO, VIRGO and the two LIGOs. It appears that other possible sources, including coalescing neutron stars, are unlikely to be detected by the initial instruments. We also argue that relic gravitational waves may be discovered by the space-based interferometers in the frequency interval 2x10^{-3}-10^{-2} Hz, at the signal-to-noise ratio level around 3.Comment: latex, 100 pages, including 20 postscript figures. Small typos corrected, references adde

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Drug discovery in ophthalmology: past success, present challenges, and future opportunities

    Get PDF
    BACKGROUND: Drug discovery has undergone major transformations in the last century, progressing from the recognition and refinement of natural products with therapeutic benefit, to the systematic screening of molecular libraries on whole organisms or cell lines and more recently to a more target-based approach driven by greater knowledge of the physiological and pathological pathways involved. Despite this evolution increasing challenges within the drug discovery industry are causing escalating rates of failure of development pipelines. DISCUSSION: We review the challenges facing the drug discovery industry, and discuss what attempts are being made to increase the productivity of drug development, including a refocusing on the study of the basic biology of the disease, and an embracing of the concept of ‘translational research’. We consider what ophthalmic drug discovery can learn from the sector in general and discuss strategies to overcome the present limitations. This includes advances in the understanding of the pathogenesis of disease; improvements in animal models of human disease; improvements in ophthalmic drug delivery and attempts at patient stratification within clinical trials. SUMMARY: As we look to the future, we argue that investment in ophthalmic drug development must continue to cover the whole translational spectrum (from ‘bench to bedside and back again’) with recognition that both biological discovery and clinical understanding will drive drug discovery, providing safe and effective therapies for ocular disease

    The human cytomegalovirus ul11 protein interacts with the receptor tyrosine phosphatase cd45, resulting in functional paralysis of t cells

    Get PDF
    Human cytomegalovirus (CMV) exerts diverse and complex effects on the immune system, not all of which have been attributed to viral genes. Acute CMV infection results in transient restrictions in T cell proliferative ability, which can impair the control of the virus and increase the risk of secondary infections in patients with weakened or immature immune systems. In a search for new immunomodulatory proteins, we investigated the UL11 protein, a member of the CMV RL11 family. This protein family is defined by the RL11 domain, which has homology to immunoglobulin domains and adenoviral immunomodulatory proteins. We show that pUL11 is expressed on the cell surface and induces intercellular interactions with leukocytes. This was demonstrated to be due to the interaction of pUL11 with the receptor tyrosine phosphatase CD45, identified by mass spectrometry analysis of pUL11-associated proteins. CD45 expression is sufficient to mediate the interaction with pUL11 and is required for pUL11 binding to T cells, indicating that pUL11 is a specific CD45 ligand. CD45 has a pivotal function regulating T cell signaling thresholds; in its absence, the Src family kinase Lck is inactive and signaling through the T cell receptor (TCR) is therefore shut off. In the presence of pUL11, several CD45-mediated functions were inhibited. The induction of tyrosine phosphorylation of multiple signaling proteins upon TCR stimulation was reduced and T cell proliferation was impaired. We therefore conclude that pUL11 has immunosuppressive properties, and that disruption of T cell function via inhibition of CD45 is a previously unknown immunomodulatory strategy of CMV
    corecore