56 research outputs found

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    Performance Assessment in Fingerprinting and Multi Component Quantitative NMR Analyses

    Get PDF
    An interlaboratory comparison (ILC) was organized with the aim to set up quality control indicators suitable for multicomponent quantitative analysis by nuclear magnetic resonance (NMR) spectroscopy. A total of 36 NMR data sets (corresponding to 1260 NMR spectra) were produced by 30 participants using 34 NMR spectrometers. The calibration line method was chosen for the quantification of a five-component model mixture. Results show that quantitative NMR is a robust quantification tool and that 26 out of 36 data sets resulted in statistically equivalent calibration lines for all considered NMR signals. The performance of each laboratory was assessed by means of a new performance index (named Qp-score) which is related to the difference between the experimental and the consensus values of the slope of the calibration lines. Laboratories endowed with a Qp-score falling within the suitable acceptability range are qualified to produce NMR spectra that can be considered statistically equivalent in terms of relative intensities of the signals. In addition, the specific response of nuclei to the experimental excitation/relaxation conditions was addressed by means of the parameter named NR. NR is related to the difference between the theoretical and the consensus slopes of the calibration lines and is specific for each signal produced by a well-defined set of acquisition parameters

    The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars

    Get PDF
    This catalog summarizes 117 high-confidence 0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars.We compare the gammaray properties with those in the radio, optical, and X-ray bands.We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermiメs selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions

    XAF1 as a modifier of p53 function and cancer susceptibility

    Get PDF
    Cancer risk is highly variable in carriers of the common TP53-R337H founder allele, possibly due to the influence of modifier genes. Whole-genome sequencing identified a variant in the tumor suppressor XAF1 (E134*/Glu134Ter/rs146752602) in a subset of R337H carriers. Haplotype-defining variants were verified in 203 patients with cancer, 582 relatives, and 42,438 newborns. The compound mutant haplotype was enriched in patients with cancer, conferring risk for sarcoma (P = 0.003) and subsequent malignancies (P = 0.006). Functional analyses demonstrated that wild-type XAF1 enhances transactivation of wild-type and hypomorphic TP53 variants, whereas XAF1-E134* is markedly attenuated in this activity. We propose that cosegregation of XAF1-E134* and TP53-R337H mutations leads to a more aggressive cancer phenotype than TP53-R337H alone, with implications for genetic counseling and clinical management of hypomorphic TP53 mutant carriers.Fil: Pinto, Emilia M.. St. Jude Children's Research Hospital; Estados UnidosFil: Figueiredo, Bonald C.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Chen, Wenan. St. Jude Children's Research Hospital; Estados UnidosFil: Galvao, Henrique C.R.. Hospital de Câncer de Barretos; BrasilFil: Formiga, Maria Nirvana. A.c.camargo Cancer Center; BrasilFil: Fragoso, Maria Candida B.V.. Universidade de Sao Paulo; BrasilFil: Ashton Prolla, Patricia. Universidade Federal do Rio Grande do Sul; BrasilFil: Ribeiro, Enilze M.S.F.. Universidade Federal do Paraná; BrasilFil: Felix, Gabriela. Universidade Federal da Bahia; BrasilFil: Costa, Tatiana E.B.. Hospital Infantil Joana de Gusmao; BrasilFil: Savage, Sharon A.. National Cancer Institute; Estados UnidosFil: Yeager, Meredith. National Cancer Institute; Estados UnidosFil: Palmero, Edenir I.. Hospital de Câncer de Barretos; BrasilFil: Volc, Sahlua. Hospital de Câncer de Barretos; BrasilFil: Salvador, Hector. Hospital Sant Joan de Deu Barcelona; EspañaFil: Fuster Soler, Jose Luis. Hospital Clínico Universitario Virgen de la Arrixaca; EspañaFil: Lavarino, Cinzia. Hospital Sant Joan de Deu Barcelona; EspañaFil: Chantada, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. St. Jude Children's Research Hospital; Estados UnidosFil: Vaur, Dominique. Comprehensive Cancer Center François Baclesse; FranciaFil: Odone Filho, Vicente. Universidade de Sao Paulo; BrasilFil: Brugières, Laurence. Institut de Cancerologie Gustave Roussy; FranciaFil: Else, Tobias. University of Michigan; Estados UnidosFil: Stoffel, Elena M.. University of Michigan; Estados UnidosFil: Maxwell, Kara N.. University of Pennsylvania; Estados UnidosFil: Achatz, Maria Isabel. Hospital Sirio-libanês; BrasilFil: Kowalski, Luis. A.c.camargo Cancer Center; BrasilFil: De Andrade, Kelvin C.. National Cancer Institute; Estados UnidosFil: Pappo, Alberto. St. Jude Children's Research Hospital; Estados UnidosFil: Letouze, Eric. Centre de Recherche Des Cordeliers; FranciaFil: Latronico, Ana Claudia. Universidade de Sao Paulo; BrasilFil: Mendonca, Berenice B.. Universidade de Sao Paulo; BrasilFil: Almeida, Madson Q.. Universidade de Sao Paulo; BrasilFil: Brondani, Vania B.. Universidade de Sao Paulo; BrasilFil: Bittar, Camila M.. Universidade Federal do Rio Grande do Sul; BrasilFil: Soares, Emerson W.S.. Hospital Do Câncer de Cascavel; BrasilFil: Mathias, Carolina. Universidade Federal do Paraná; BrasilFil: Ramos, Cintia R.N.. Hospital de Câncer de Barretos; BrasilFil: Machado, Moara. National Cancer Institute; Estados UnidosFil: Zhou, Weiyin. National Cancer Institute; Estados UnidosFil: Jones, Kristine. National Cancer Institute; Estados UnidosFil: Vogt, Aurelie. National Cancer Institute; Estados UnidosFil: Klincha, Payal P.. National Cancer Institute; Estados UnidosFil: Santiago, Karina M.. A.c.camargo Cancer Center; BrasilFil: Komechen, Heloisa. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Paraizo, Mariana M.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Parise, Ivy Z.S.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Hamilton, Kayla V.. St. Jude Children's Research Hospital; Estados UnidosFil: Wang, Jinling. St. Jude Children's Research Hospital; Estados UnidosFil: Rampersaud, Evadnie. St. Jude Children's Research Hospital; Estados UnidosFil: Clay, Michael R.. St. Jude Children's Research Hospital; Estados UnidosFil: Murphy, Andrew J.. St. Jude Children's Research Hospital; Estados UnidosFil: Lalli, Enzo. Institut de Pharmacologie Moléculaire et Cellulaire; FranciaFil: Nichols, Kim E.. St. Jude Children's Research Hospital; Estados UnidosFil: Ribeiro, Raul C.. St. Jude Children's Research Hospital; Estados UnidosFil: Rodriguez-Galindo, Carlos. St. Jude Children's Research Hospital; Estados UnidosFil: Korbonits, Marta. Queen Mary University of London; Reino UnidoFil: Zhang, Jinghui. St. Jude Children's Research Hospital; Estados UnidosFil: Thomas, Mark G.. Colegio Universitario de Londres; Reino UnidoFil: Connelly, Jon P.. St. Jude Children's Research Hospital; Estados UnidosFil: Pruett-Miller, Shondra. St. Jude Children's Research Hospital; Estados UnidosFil: Diekmann, Yoan. Colegio Universitario de Londres; Reino UnidoFil: Neale, Geoffrey. St. Jude Children's Research Hospital; Estados UnidosFil: Wu, Gang. St. Jude Children's Research Hospital; Estados UnidosFil: Zambetti, Gerard P.. St. Jude Children's Research Hospital; Estados Unido

    A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope

    Get PDF
    Gamma-Ray Pulsar Bonanza Most of the pulsars we know about were detected through their radio emission; a few are known to pulse gamma rays but were first detected at other wavelengths (see the Perspective by Halpern ). Using the Fermi Gamma-Ray Space Telescope, Abdo et al. (p. 840 , published online 2 July; see the cover) report the detection of 16 previously unknown pulsars based on their gamma-ray emission alone. Thirteen of these coincide with previously unidentified gamma-ray sources, solving the 30-year-old mystery of their identities. Pulsars are fast-rotating neutron stars. With time they slow down and cease to radiate; however, if they are in a binary system, they can have their spin rates increased by mass transfer from their companion stars, starting a new life as millisecond pulsars. In another study, Abdo et al. (p. 845 ) report the detection of gamma-ray emission from the globular cluster 47 Tucanae, which is coming from an ensemble of millisecond pulsars in the cluster's core. The data imply that there are up to 60 millisecond pulsars in 47 Tucanae, twice as many as predicted by radio observations. In a further companion study, Abdo et al. (p. 848 , published online 2 July) searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars outside of stellar clusters, finding gamma-ray pulsations for eight of them. Their properties resemble those of other gamma-ray pulsars, suggesting that they share the same basic emission mechanism. Indeed, both sets of pulsars favor emission models in which the gamma rays are produced in the outer magnetosphere of the neutron star

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope

    Get PDF
    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models

    Contemporaneous Broadband Observations of Three High-redshift BL LAC Objects

    Get PDF
    We have collected broadband spectral energy distributions (SEDs) of three BL Lac objects 3FGL J0022.1-1855 (z = 0.689), 3FGL J0630.9-2406 (z≳ 1.239), and 3FGL J0811.2-7529 (z = 0.774), detected by Fermi with relatively flat gigaelectronvolt spectra. By observing simultaneously in the near-infrared to hard X-ray band, we can well characterize the high end of the synchrotron component of the SED. Thus, fitting the SEDs to synchro-Compton models of the dominant emission from the relativistic jet, we can constrain the underlying particle properties and predict the shape of the gigaelectronvolt Compton component. Standard extragalactic background light (EBL) models explain the high-energy absorption well, with poorer fits for high-ultraviolet models. The fits show clear evidence for EBL absorption in the Fermi spectrum of our highest-redshift source 3FGL J0630.9-2406. While synchrotron self-Compton models adequately describe the SEDs, the situation may be complicated by possible external Compton components. For 3FGL J0811.2-7529, we also discover a nearby serendipitous source in the X-ray data, which is almost certainly another lower synchrotron peak frequency (vpksy) BL Lac, that may contribute flux in the Fermi band. Since our sources are unusual high-luminosity, moderate vpksy BL Lacs, we compare these quantities and the Compton dominance, the ratio of peak inverse Compton to peak synchrotron luminosities (LpkIC/Lpksy), with those of the full Fermi BL Lac population
    corecore