408 research outputs found

    Acute tryptophan depletion alters affective touch perception

    Get PDF
    RationaleAffiliative tactile interactions help regulate physiological arousal and confer resilience to acute and chronic stress. C-tactile afferents (CTs) are a population of unmyelinated, low threshold mechanosensitive cutaneous nerve fibres which respond optimally to a low force stimulus, moving at between 1 and 10 cm/s. As CT firing frequencies correlate positively with subjective ratings of touch pleasantness, they are hypothesised to form the first stage of encoding affiliative tactile interactions. Serotonin is a key modulator of social responses with known effects on bonding.ObjectivesThe aim of the present study was to determine the effect of acutely lowering central serotonin levels on perceptions of CT-targeted affective touch.MethodsIn a double blind, placebo-controlled design, the effect of acute tryptophan depletion (ATD) on 25 female participants' ratings of directly and vicariously experienced touch was investigated. Psychophysical techniques were used to deliver dynamic tactile stimuli; some velocities were targeted to optimally activate CTs (1-10 cm/s), whereas other, faster and slower strokes fell outside the CT optimal range. Discriminative tactile function, cold pain threshold and tolerance were also measured.ResultsATD significantly increased pleasantness ratings of both directly and vicariously experienced affective touch, increasing discrimination of the specific hedonic value of CT targeted velocities. While ATD had no effect on either tactile or cold pain thresholds, there was a trend for reduced tolerance to cold pain.ConclusionsThese findings are consistent with previous reports that depletion of central serotonin levels modulates neural and behavioural responsiveness to appetitive sensory signals

    C-tactile afferent stimulating touch carries a positive affective value

    Get PDF
    The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major—smile muscle, positive affect & corrugator supercilii—frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other stimuli. These results offer the first empirical evidence in humans that tactile stimulation that optimally activates CTs carries a positive affective valence that can be measured implicitly

    Hold me or stroke me? Individual differences in static and dynamic affective touch

    Get PDF
    Low-threshold mechanosensory C-fibres, C-tactile afferents (CTs), respond optimally to sensations associated with a human caress. Additionally, CT-stimulation activates brain regions associated with processing affective states. This evidence has led to the social touch hypothesis, that CTs have a key role in encoding the affective properties of social touch. Thus, to date, the affective touch literature has focussed on gentle stroking touch. However, social touch interactions involve many touch types, including static, higher force touch such as hugging and holding. This study aimed to broaden our understanding of the social touch hypothesis by investigating relative preference for static vs dynamic touch and the influence of force on these preferences. Additionally, as recent literature has highlighted individual differences in CT-touch sensitivity, this study investigated the influence of affective touch experiences and attitudes, autistic traits, depressive symptomology and perceived stress on CT-touch sensitivity. Directly experienced, robotic touch responses were obtained through a lab-based study and vicarious touch responses through an online study where participants rated affective touch videos. Individual differences were determined by self-report questionnaire measures. In general, static touch was preferred over CT-non-optimal stroking touch, however, consistent with previous reports, CT-optimal stroking (velocity 1–10 cm/s) was rated most pleasant. However, static and CT-optimal vicarious touch were rated comparably for dorsal hand touch. For all velocities, 0.4N was preferred over 0.05N and 1.5N robotic touch. Participant dynamic touch quadratic terms were calculated for robotic and vicarious touch as a proxy CT-sensitivity measure. Attitudes to intimate touch significantly predict robotic and vicarious quadratic terms, as well as vicarious static dorsal hand touch ratings. Perceived stress negatively predicted robotic static touch ratings. This study has identified individual difference predictors of CT-touch sensitivity. Additionally, it has highlighted the context dependence of affective touch responses and the need to consider static, as well as dynamic affective touch.</jats:p

    Psychophysical Investigations into the Role of Low-Threshold C Fibres in Non-Painful Affective Processing and Pain Modulation

    Get PDF
    We recently showed that C low-threshold mechanoreceptors (CLTMRs) contribute to touch-evoked pain (allodynia) during experimental muscle pain. Conversely, in absence of ongoing pain, the activation of CLTMRs has been shown to correlate with a diffuse sensation of pleasant touch. In this study, we evaluated (1) the primary afferent fibre types contributing to positive (pleasant) and negative (unpleasant) affective touch and (2) the effects of tactile stimuli on tonic muscle pain by varying affective attributes and frequency parameters. Psychophysical observations were made in 10 healthy participants. Two types of test stimuli were applied: stroking stimulus using velvet or sandpaper at speeds of 0.1, 1.0 and 10.0 cm/s; focal vibrotactile stimulus at low (20 Hz) or high (200 Hz) frequency. These stimuli were applied in the normal condition (i.e. no experimental pain) and following the induction of muscle pain by infusing hypertonic saline (5%) into the tibialis anterior muscle. These observations were repeated following the conduction block of myelinated fibres by compression of sciatic nerve. In absence of muscle pain, all participants reliably linked velvet-stroking to pleasantness and sandpaper-stroking to unpleasantness (no pain). Likewise, low-frequency vibration was linked to pleasantness and high-frequency vibration to unpleasantness. During muscle pain, the application of previously pleasant stimuli resulted in overall pain relief, whereas the application of previously unpleasant stimuli resulted in overall pain intensification. These effects were significant, reproducible and persisted following the blockade of myelinated fibres. Taken together, these findings suggest the role of low-threshold C fibres in affective and pain processing. Furthermore, these observations suggest that temporal coding need not be limited to discriminative aspects of tactile processing, but may contribute to affective attributes, which in turn predispose individual responses towards excitatory or inhibitory modulation of pain

    C-tactile afferents: Cutaneous mediators of oxytocin release during affiliative tactile interactions?

    Get PDF
    Low intensity, non-noxious, stimulation of cutaneous somatosensory nerves has been shown to trigger oxytocin release and is associated with increased social motivation, plus reduced physiological and behavioural reactivity to stressors. However, to date, little attention has been paid to the specific nature of the mechanosensory nerves which mediate these effects. In recent years, the neuroscientific study of human skin nerves (microneurography studies on single peripheral nerve fibres) has led to the identification and characterisation of a class of touch sensitive nerve fibres named C-tactile afferents. Neither itch nor pain receptive, these unmyelinated, low threshold mechanoreceptors, found only in hairy skin, respond optimally to low force/velocity stroking touch. Notably, the speed of stroking which c-tactile afferents fire most strongly to is also that which people perceive to be most pleasant. The social touch hypothesis posits that this system of nerves has evolved in mammals to signal the rewarding value of physical contact in nurturing and social interactions. In support of this hypothesis, in this paper we review the evidence that cutaneous stimulation directly targeted to optimally activate c-tactile afferents reduces physiological arousal, carries a positive affective value and, under healthy conditions, inhibits responses to painful stimuli. These effects mirror those, we also review, which have been reported following endogenous release and exogenous administration of oxytocin. Taken together this suggests C-tactile afferent stimulation may mediate oxytocin release during affiliative tactile interactions

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN
    corecore