56 research outputs found

    SYNTHESIS AND STUDY OF BIMETALLIC CATALYTIC SYSTEMS FORMED IN SITU BY ALUMINUM, 1, 2-DICHLOROETHANE AND Fe (III), Ni (II), Mn (II) CHLORIDES

    Get PDF
    Novel bimetallic catalytic systems based on the catalytic complex (CTC) are synthesized from the reaction of Al metal and 1, 2-dichloroethane in the mode of in situ and modified with the metal chlorides of Mn (II), Fe (III), and Ni (II) in paraffin medium. The structures of synthesized catalytic samples were confirmed by bulk and surface characterization with FTIR, X-ray diffraction (XRD), thermal analyses (TG/DTG/DTA), dynamic light scattering spectroscopy (DLS) for determination the particle size and X-ray fluorescence microscopy (XRFM)

    Survival implications vs. complications: unraveling the impact of vitamin D adjunctive use in critically ill patients with COVID-19—A multicenter cohort study

    Get PDF
    BackgroundDespite insufficient evidence, vitamin D has been used as adjunctive therapy in critically ill patients with COVID-19. This study evaluates the effectiveness and safety of vitamin D as an adjunctive therapy in critically ill COVID-19 patients.MethodsA multicenter retrospective cohort study that included all adult COVID-19 patients admitted to the intensive care units (ICUs) between March 2020 and July 2021. Patients were categorized into two groups based on their vitamin D use throughout their ICU stay (control vs. vitamin D). The primary endpoint was in-hospital mortality. Secondary outcomes were the length of stay (LOS), mechanical ventilation (MV) duration, and ICU-acquired complications. Propensity score (PS) matching (1:1) was used based on the predefined criteria. Multivariable logistic, Cox proportional hazards, and negative binomial regression analyses were employed as appropriate.ResultsA total of 1,435 patients were included in the study. Vitamin D was initiated in 177 patients (12.3%), whereas 1,258 patients did not receive it. A total of 288 patients were matched (1:1) using PS. The in-hospital mortality showed no difference between patients who received vitamin D and the control group (HR 1.22, 95% CI 0.87–1.71; p = 0.26). However, MV duration and ICU LOS were longer in the vitamin D group (beta coefficient 0.24 (95% CI 0.00–0.47), p = 0.05 and beta coefficient 0.16 (95% CI −0.01 to 0.33), p = 0.07, respectively). As an exploratory outcome, patients who received vitamin D were more likely to develop major bleeding than those who did not [OR 3.48 (95% CI 1.10, 10.94), p = 0.03].ConclusionThe use of vitamin D as adjunctive therapy in COVID-19 critically ill patients was not associated with survival benefits but was linked with longer MV duration, ICU LOS, and higher odds of major bleeding

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Design, Structural Inspection and Bio-Medicinal Applications of Some Novel Imine Metal Complexes Based on Acetylferrocene

    No full text
    Some novel imine metal chelates with Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ cations were produced from 2-acetylferrocene and 3-aminophenol. The new acetylferrocene azomethine ligand ((Z)-cyclopenta-1,3-dien-1-yl(2-(1-((3-hydroxyphenyl)imino)ethyl)cyclopenta-2,4-dien-1-yl)iron) and its metal ion chelates were constructed and elucidated using FT-IR, UV/Vis, 1HNMR, DTA/TGA, CHNClM studies, mass spectrometry and SEM analysis. According to the TGA/DTG investigation, the ferrocene moiety spontaneously disintegrates to liberate FeO. The morphology of the free acetylferrocene azomethine via SEM analysis was net-shaped with a size of 64.73 nm, which differed in Cd(II) complex to be a spongy shape with a size of 42.43 nm. The quantum chemical features of the azomethine ligand (HL) were computed, and its electronic and molecular structure was refined theoretically. The investigated acetylferrocene imine ligand behaves as bidinetate ligand towards the cations under study to form octahedral geometries in case of all complexes except in case of Zn2+ is tetrahedral. Various microorganisms were used to investigate the anti-pathogenic effects of the free acetylferrocene azomethine ligand and its metal chelates. Moreover, the prepared ligand and its metal complexes were tested for anticancer activity utilizing four different concentrations against the human breast cancer cell line (MCF7) and the normal melanocyte cell line (HBF4). Furthermore, the binding of 3-aminophenol, 2-acetylferrocene, HL, Mn2+, Cu2+, and Cd2+ metal chelates to the receptor of breast cancer mutant oxidoreductase was discovered using molecular docking (PDB ID: 3HB5)

    Experimental Design Modeling of the Effect of Hexagonal Wurtzite—ZnO Synthesis Conditions on Its Characteristics and Performance as a Cationic and Anionic Adsorbent

    No full text
    Surface composite design was used to study the effect of the ZnO synthesis conditions on its adsorption of methyl orange (MO) and methylene blue (MB). The ZnO was prepared via hydrothermal treatment under different conditions including temperature (T), precursor concentration (C), pH, and reaction time (t). Models were built using four Design expert-11 software-based responses: the point of zero charge (pHzc), MO and MB removal efficiencies (RMO, RMB), MO and MB adsorption capacities (qMO, qMB), and hydrodynamic diameter of ZnO particles (Dh). ZnO was characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, UV/VIS spectroscopy, thermal gravimetric analysis (TGA), and dynamic light scattering (DLS). The formation of ZnO was confirmed by the XRD, UV, and FTIR spectra. Results showed a very high efficiency for most of the samples for adsorption of MB, and more than 90% removal efficiency was achieved by 8 samples among 33 samples. For MO, more than 90% removal efficiency was achieved by 2 samples among 33 samples. Overall, 26 of 31 samples showed higher MB adsorption capacity than that of MO. RMB was found to depend only on the synthesis temperature while RMO depends on temperature, pH, and reaction time. pHzc was found to be affected by the synthesis pH only while Dh depends on the synthesis pH and precursor concentration

    Novel naphthenate surfactants based on petroleum acids and nitrogenous bases as corrosion inhibitors for C1018-type mild steel in CO2-saturated brine

    Get PDF
    The efficiency of two natural naphthenate surfactants (Naphthenic-dimethylamine and Naphthenic-diethylamine complexes), as corrosion inhibitors for mild steel in CO2-saturated 1% NaCl solution, has been determined by linear polarization resistance corrosion rate and potentiodynamic polarization measurements. These compounds inhibit corrosion even at very low concentrations (25 ppm), and Naphthenic-diethylamine complex is the best inhibitor giving maximum inhibition efficiency (99.76) at 100 ppm. Polarization curves indicate that, the two investigated compounds are mixed inhibitors, affecting both cathodic and anodic corrosion currents. Adsorption of naphthenate surfactants on the mild steel surface is in good agreement with the Langmuir adsorption isotherm model, and the calculated Gibbs free energy values confirm the chemical nature of the adsorption. Energy dispersive X-ray fluorescence microscopy (EDRF) and scanning electron microscope (SEM) observations confirmed the existence of such an adsorbed film on the mild steel surface

    Fabrication of Chitosan Nanofibers Containing Some Steroidal Compounds as a Drug Delivery System

    No full text
    A novel drug delivery system based on chitosan nanofibers containing some steroidal derivatives was developed using an electrospinning process. Oxazolines and aziridines from the cholestane series of steroidal epoxides were successfully synthesized and characterized by elemental analysis, Fourier transforms infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1HNMR), and mass spectroscopy (MS). Steroidal-compound-loaded chitosan (ST-CH) nanofibers were fabricated using the electrospinning technique in the presence of polyvinylpyrrolidone (CH/PVP). The electrospun nanofibers were characterized by scanning electron microscopy (SEM). The swelling degree of the electrospun nanofibers and their steroidal compound release performance were studied as well. Furthermore, their antibacterial activity against gram-positive (Staphylococcus aurous) and gram-negative bacteria (Escherichia coli) was evaluated. The experimental data revealed that identical and bead-free nanofiber mats loaded with 10 Wt. % of synthesized steroidal derivatives had been obtained. The FTIR spectrum proved that no change occurred in the chitosan structure during the electrospinning process. The synthesized nanofiber mats showed a high swelling degree and a burst release of steroidal compounds after 2 h doping in phosphate buffer saline. In addition, the electrospun nanofibers containing 3β-chloro-N-amido-5α-cholestano-aziridine and those containing 3β-acetoxy-N-amido-5α-cholestano-aziridine were the most active, with activity indices of 91 and 104% in the case of S. aureus and 52% and 61% in the case of E. coli, respectively. The release mechanism by CH/PVP of the drug samples was studied based on the charge density and diffusion controlled factors. The oxazoline derivatives release mechanism from CH/PVP was evaluated by applying the suppositions of the Ritger-Peppas kinetic model and by estimating the transport exponent; the latter revealed the involvement of the solvent diffusion and chain relaxation processes. Tailored steroidal loaded-chitosan (ST-CH) nanofibers are expected to be feasible and efficient drug delivery systems

    Enhanced Nitrate Ions Remediation Using Fe0 Nanoparticles from Underground Water: Synthesis, Characterizations, and Performance under Optimizing Conditions

    No full text
    The presence of nitrates in water in large amounts is one of the most dangerous health issues. The greatest risk posed by nitrates is hemoglobin oxidation, which results in Methemoglobin in the human body, resulting in Methemoglobinemia. There are many ways to eliminate nitrates from underground water. One of the most effective and selective methods is using zero-valent iron (ZVI) nanoparticles. ZVI nanoparticles can be easily synthesized by reducing ferric or ferrous ions using sodium borohydride. The prepared ZVI nanoparticles were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron microscopy (TEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area, and zeta potential. We aim to eliminate or reduce the nitrates in water to be at the acceptable range, according to the world health organization (WHO), of 10.0 mg/L. Nitrate concentration in water after and before treatment is measured using the UV scanning method at 220 nm wavelength for the synthetic contaminated water and electrochemical method for the naturally contaminated water. The conditions were optimized for obtaining an efficient removing process. The removal efficiency reaches about 91% at the optimized conditions

    Recent Overview of Potent Antioxidant Activity of Coordination Compounds

    No full text
    During recent decades, the complexation of organic ligands toward several metal ions of s-p and d-block has been applied as a plan to enhance its antioxidant performance. Due to their wide range of beneficial impacts, coordination compounds are widely used in industries, specifically in the medicinal and pharmaceutical fields. The activity is generally improved by chelation consequently knowing that the characteristics of both ligands and metals can lead to the development of greatly active compounds. Chelation compounds are a substitute for using the traditional synthetic antioxidants, because metal chelates present benefits, including a variety in geometry, oxidation states, and coordination number, that assist and favor the redox methods associated with antioxidant action. As well as understanding the best studied anti-oxidative assets of these compounds, coordination compounds are involved in the free radical scavenging process and protecting human organisms from the opposing effects of these radicals. The antioxidant ability can be assessed by various interrelated systems. The methodological modification offers the most knowledge on the antioxidant property of metal chelates. Colorimetric techniques are the most used, though electron paramagnetic resonance (EPR) is an alternative for metallic compounds, since color does not affect the results. Information about systems, with their benefits, and restrictions, permits a dependable valuation of the antioxidant performance of coordination compounds, as well as assisting application in various states wherever antioxidant drugs are required, such as in food protection, appropriate good-packaged foods, dietary supplements, and others. Because of the new exhaustive analysis of organic ligands, it has become a separate field of research in chemistry. The present investigation will be respected for providing a foundation for the antioxidant properties of organic ligands, future tests on organic ligands, and building high-quality antioxidative compounds
    corecore