159 research outputs found

    Tissue-Tissue Interaction-Triggered Calcium Elevation Is Required for Cell Polarization during Xenopus Gastrulation

    Get PDF
    The establishment of cell polarity is crucial for embryonic cells to acquire their proper morphologies and functions, because cell alignment and intracellular events are coordinated in tissues during embryogenesis according to the cell polarity. Although much is known about the molecules involved in cell polarization, the direct trigger of the process remains largely obscure. We previously demonstrated that the tissue boundary between the chordamesoderm and lateral mesoderm of Xenopus laevis is important for chordamesodermal cell polarity. Here, we examined the intracellular calcium dynamics during boundary formation between two different tissues. In a combination culture of nodal-induced chordamesodermal explants and a heterogeneous tissue, such as ectoderm or lateral mesoderm, the chordamesodermal cells near the boundary frequently displayed intracellular calcium elevation; this frequency was significantly less when homogeneous explants were used. Inhibition of the intracellular calcium elevation blocked cell polarization in the chordamesodermal explants. We also observed frequent calcium waves near the boundary of the dorsal marginal zone (DMZ) dissected from an early gastrula-stage embryo. Optical sectioning revealed that where heterogeneous explants touched, the chordamesodermal surface formed a wedge with the narrow end tucked under the heterogeneous explant. No such configuration was seen between homogeneous explants. When physical force was exerted against a chordamesodermal explant with a glass needle at an angle similar to that created in the explant, or migrating chordamesodermal cells crawled beneath a silicone block, intracellular calcium elevation was frequent and cell polarization was induced. Finally, we demonstrated that a purinergic receptor, which is implicated in mechano-sensing, is required for such frequent calcium elevation in chordamesoderm and for cell polarization. This study raises the possibility that tissue-tissue interaction generates mechanical forces through cell-cell contact that initiates coordinated cell polarization through a transient increase in intracellular calcium

    Treatment algorithm of ACTH deficiency

    Get PDF
    Objective : To examine diagnostic performance of corticotropin-releasing hormone (CRH) test combined with baseline dehydroepiandrosterone sulfate (DHEA-S) in patients with a suspect of central adrenal insufficiency. Methods : Patients (n=215) requiring daily or intermittent hydrocortisone replacement, or no replacement were retrospectively checked with their peak cortisol after CRH test and baseline DHEA-S. Results : None of 106 patients with the peak cortisol ≥ 17.5 μg / dL after CRH test required replacement, and all 64 patients with the peak cortisol < 10.0 μg / dL required daily replacement. Among 8 patients with 10.0 μg / dL ≤ the peak cortisol < 17.5 μg / dL and baseline DHEA-S below the reference range, 6 patients required daily replacement and 1 patient was under intermittent replacement. Among 37 patients with 10.0 μg / dL ≤ the peak cortisol < 17.5 μg / dL and baseline DHEA-S within the reference range, 10 and 6 patients were under intermittent and daily replacement, respectively. Conclusions : No patients with the peak cortisol ≥ 17.5 μg / dL required hydrocortisone replacement, and all patients with the peak cortisol below 10.0 μg / dL required daily replacement. Careful clinical evaluation was required to determine requirement for replacement in patients with 10.0 μg / dL ≤ the peak cortisol < 17.5 μg / dL even in combination with baseline DHEA-S

    First principles high throughput screening of oxynitrides for water-splitting photocatalysts

    Get PDF
    In this paper, we present a first principles high throughput screening system to search for new water-splitting photocatalysts. We use the approach to screen through nitrides and oxynitrides. Most of the known photocatalytic materials in the screened chemical space are reproduced. In addition, sixteen new materials are suggested by the screening approach as promising photocatalysts, including three binary nitrides, two ternary oxynitrides and eleven quaternary oxynitrides.United States. Dept. of Energy (contract DE-FG02-96ER4557)National Science Foundation (U.S.) (TeraGrid resources under Grant No. TG-DMR970008S)Pittsburgh Supercomputing CenterUniversity of Texas at Austin. Texas Advanced Computing CenterEni-MIT Solar Frontiers Cente

    IGFBP3 Colocalizes with and Regulates Hypocretin (Orexin)

    Get PDF
    Background: The sleep disorder narcolepsy is caused by a vast reduction in neurons producing the hypocretin (orexin) neuropeptides. Based on the tight association with HLA, narcolepsy is believed to result from an autoimmune attack, but the cause of hypocretin cell loss is still unknown. We performed gene expression profiling in the hypothalamus to identify novel genes dysregulated in narcolepsy, as these may be the target of autoimmune attack or modulate hypocretin gene expression. Methodology/Principal Findings: We used microarrays to compare the transcriptome in the posterior hypothalamus of (1) narcoleptic versus control postmortem human brains and (2) transgenic mice lacking hypocretin neurons versus wild type mice. Hypocretin was the most downregulated gene in human narcolepsy brains. Among many additional candidates, only one, insulin-like growth factor binding protein 3 (IGFBP3), was downregulated in both human and mouse models and coexpressed in hypocretin neurons. Functional analysis indicated decreased hypocretin messenger RNA and peptide content, and increased sleep in transgenic mice overexpressing human IGFBP3, an effect possibly mediated through decrease

    Cyclical and Patch-Like GDNF Distribution along the Basal Surface of Sertoli Cells in Mouse and Hamster Testes

    Get PDF
    BACKGROUND AND AIMS: In mammalian spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) is one of the major Sertoli cell-derived factors which regulates the maintenance of undifferentiated spermatogonia including spermatogonial stem cells (SSCs) through GDNF family receptor α1 (GFRα1). It remains unclear as to when, where and how GDNF molecules are produced and exposed to the GFRα1-positive spermatogonia in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: Here we show the cyclical and patch-like distribution of immunoreactive GDNF-positive signals and their close co-localization with a subpopulation of GFRα1-positive spermatogonia along the basal surface of Sertoli cells in mice and hamsters. Anti-GDNF section immunostaining revealed that GDNF-positive signals are mainly cytoplasmic and observed specifically in the Sertoli cells in a species-specific as well as a seminiferous cycle- and spermatogenic activity-dependent manner. In contrast to the ubiquitous GDNF signals in mouse testes, high levels of its signals were cyclically observed in hamster testes prior to spermiation. Whole-mount anti-GDNF staining of the seminiferous tubules successfully visualized the cyclical and patch-like extracellular distribution of GDNF-positive granular deposits along the basal surface of Sertoli cells in both species. Double-staining of GDNF and GFRα1 demonstrated the close co-localization of GDNF deposits and a subpopulation of GFRα1-positive spermatogonia. In both species, GFRα1-positive cells showed a slender bipolar shape as well as a tendency for increased cell numbers in the GDNF-enriched area, as compared with those in the GDNF-low/negative area of the seminiferous tubules. CONCLUSION/SIGNIFICANCE: Our data provide direct evidence of regionally defined patch-like GDNF-positive signal site in which GFRα1-positive spermatogonia possibly interact with GDNF in the basal compartment of the seminiferous tubules

    Feeding behaviour and digestion physiology in larval fish – current knowledge and gaps and bottlenecks in research

    Get PDF
    Food uptake follows rules defined by feeding behaviour that determines the kind and quantity of food ingested by fish larvae as well as how live prey and food particles are detected, captured and ingested. Feeding success depends on the progressive development of anatomical characteristics and physiological functions and on the availability of suitable food items throughout larval development. The fish larval stages present eco-morpho-physiological features very different from adults and differ from one species to another. The organoleptic properties, dimensions, detectability, movements characteristics and buoyancy of food items are all crucial features that should be considered, but is often ignored, in feeding regimes. Ontogenetic changes in digestive function lead to limitations in the ability to process certain feedstuffs. There is still a lack of knowledge about the digestion and absorption of various nutrients and about the ontogeny of basic physiological mechanisms in fish larvae, including how they are affected by genetic, dietary and environmental factors. The neural and hormonal regulation of the digestive process and of appetite is critical for optimizing digestion. These processes are still poorly described in fish larvae and attempts to develop optimal feeding regimes are often still on a ‘trial and error’ basis. A holistic understanding of feeding ecology and digestive functions is important for designing diets for fish larvae and the adaptation of rearing conditions to meet requirements for the best presentation of prey and microdiets, and their optimal ingestion, digestion and absorption. More research that targets gaps in our knowledge should advance larval rearing

    A simple and rapid chemiluminescence assay for on-site analysis of paraquat using a portable luminometer

    Get PDF
    Paraquat (N,N′-dimethyl-4,4′-bipyridinium dichloride) is one of the most widely used herbicides owing to its high efficacy and low environmental persistence. However, because paraquat has significant acute toxicity, fatalities are often caused by accidental or voluntary ingestion of paraquat. In consideration of the strong toxicity and fast-Acting property of paraquat, on-site analysis at accident scenes should be effective in facilitating immediate medical treatment. In this study, a simple and rapid chemiluminescence assay using a portable luminometer was developed for on-site analysis of paraquat. The proposed assay is based on luminol chemiluminescence detection of superoxide anion radical resulting from the redox reaction between paraquat and dithiothreitol. Intense chemiluminescence was observed after mixing of paraquat and dithiothreitol in the presence of luminol. Because the chemiluminescence intensity was proportional to the concentration of paraquat, a quantitative measurement of paraquat was possible. The calibration curve for standard paraquat solution was linear from 0.025 to 2.5 μM with the correlation coefficient of 0.992; the detection limit (blank + 3SD) was 22 nM. The proposed assay was applied to determine paraquat in beverage samples after a cation exchange clean-up procedure. Given that the portable luminometer used in this study is small and lightweight, the proposed assay should be useful for on-site analysis of paraquat
    corecore