37,825 research outputs found

    Fullerenes and proto-fullerenes in interstellar carbon dust

    Full text link
    Laboratory spectra of hydrogenated amorphous carbon (HAC) particles prepared under a variety of conditions show spectral features at 7.05, 8.5, 17.4 and 18.9 {\mu}m (1418, 1176, 575 & 529 cm-1) that have been associated with emission from C60 molecules. These lines occur in the spectra even though C60 molecules as such are not present in our samples. It appears that these four spectral lines in HAC can instead be associated with precursor molecules or "proto-fullerenes" that subsequently react to yield C60. We develop a model tracing the evolution and de-hydrogenation of HAC dust and show that the observation of an emission feature at 16.4 {\mu}m (610 cm-1) in astronomical spectra signals the presence of the pentagonal carbon rings required for the formation of fullerenes. We suggest that the set of four IR emission lines previously identified with C60 in many objects that also show the 16.4 {\mu}m feature and other polycyclic aromatic hydrocarbon bands arise from proto-fullerenes rather than C60. Tc1 is an example of a source in which de-hydrogenation has proceeded to the point where only fullerenes are present.Comment: 17 pages, 2 figures, accepted ApJ Letter

    Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin

    Get PDF
    Transport and mixing properties of surface currents can be detected from altimetric data by both Eulerian and Lagrangian diagnostics. In contrast with Eulerian diagnostics, Lagrangian tools like the local Lyapunov exponents have the advantage of exploiting both spatial and temporal variability of the velocity field and are in principle able to unveil subgrid filaments generated by chaotic stirring. However, one may wonder whether this theoretical advantage is of practical interest in real-data, mesoscale and submesoscale analysis, because of the uncertainties and resolution of altimetric products, and the non-passive nature of biogeochemical tracers. Here we compare the ability of standard Eulerian diagnostics and the finite-size Lyapunov exponent in detecting instantaneaous and climatological transport and mixing properties. By comparing with sea-surface temperature patterns, we find that the two diagnostics provide similar results for slowly evolving eddies like the first Alboran gyre. However, the Lyapunov exponent is also able to predict the (sub-)mesoscale filamentary process occuring along the Algerian current and above the Balearic Abyssal Plain. Such filaments are also observed, with some mismatch, in sea-surface temperature patterns. Climatologies of Lyapunov exponents do not show any compact relation with other Eulerian diagnostics, unveiling a different structure even at the basin scale. We conclude that filamentation dynamics can be detected by reprocessing available altimetric data with Lagrangian tools, giving insight into (sub-)mesoscale stirring processes relevant to tracer observations and complementing traditional Eulerian diagnostics

    Lagrangian transport in a microtidal coastal area: the Bay of Palma, island of Mallorca, Spain

    Get PDF
    Coastal transport in the Bay of Palma, a small region in the island of Mallorca, Spain, is characterized in terms of Lagrangian descriptors. The data sets used for this study are the output for two months (one in autumn and one in summer) of a high resolution numerical model, ROMS, forced atmospherically and with a spatial resolution of 300 m. The two months were selected because its different wind regime, which is the main driver of the sea dynamics in this area. Finite-size Lyapunov Exponents (FSLEs) were used to locate semi-persistent Lagrangian coherent structures (LCS) and to understand the different flow regimes in the Bay. The different wind directions and regularity in the two months have a clear impact on the surface Bay dynamics, whereas only topographic features appear clearly in the bottom structures. The fluid interchange between the Bay and the open ocean was tudied by computing particle trajectories and Residence Times (RT) maps. The escape rate of particles out of the Bay is qualitatively different, with a 32% more of escape rate of particles to the ocean in October than in July, owing to the different geometric characteristics of the flow. We show that LCSs separate regions with different transport properties by displaying spatial distributions of residence times on synoptic Lagrangian maps together with the location of the LCSs. Correlations between the time-dependent behavior of FSLE and RT are also investigated, showing a negative dependence when the stirring characterized by FSLE values moves particles in the direction of escape

    The reduction of plankton biomass induced by mesoscale stirring: a modeling study in the Benguela upwelling

    Get PDF
    Recent studies, both based on remote sensed data and coupled models, showed a reduction of biological productivity due to vigorous horizontal stirring in upwelling areas. In order to better understand this phenomenon, we consider a system of oceanic flow from the Benguela area coupled with a simple biogeochemical model of Nutrient-Phyto-Zooplankton (NPZ) type. For the flow three different surface velocity fields are considered: one derived from satellite altimetry data, and the other two from a regional numerical model at two different spatial resolutions. We compute horizontal particle dispersion in terms of Lyapunov Exponents, and analyzed their correlations with phytoplankton concentrations. Our modelling approach confirms that in the south Benguela there is a reduction of biological activity when stirring is increased. Two-dimensional offshore advection and latitudinal difference in Primary Production, also mediated by the flow, seem to be the dominant processes involved. We estimate that mesoscale processes are responsible for 30 to 50% of the offshore fluxes of biological tracers. In the northern area, other factors not taken into account in our simulation are influencing the ecosystem. We suggest explanations for these results in the context of studies performed in other eastern boundary upwelling areas
    corecore