530 research outputs found

    Constant-Weight and Constant-Charge Binary Run-Length Limited Codes

    Full text link
    Constant-weight and constant-charge binary sequences with constrained run length of zeros are introduced. For these sequences, the weight and the charge distribution are found. Then, recurrent and direct formulas for calculating the number of these sequences are obtained. With considering these numbers of constant-weight and constant-charge RLL sequences as coefficients of convergent power series, generating functions are derived. The fact, that generating function for enumerating constant-charge RLL sequences does not have a closed form, is proved. Implementation of encoding and decoding procedures using Cover's enumerative scheme is shown. On the base of obtained results, some examples, such as enumeration of running-digital-sum (RDS) constrained RLL sequences or peak-shifts control capability are also provided.Comment: 29 pages, submitted to IEEE Transactions on Information Theory. This paper is a corrected version of a paper with the same title that appeared on the arXiv in Feb. 2009. The major change is in Section VI, in which Subsection D is now well define

    Structural and electronic properties of new "122" pnictogen-free superconductor SrPd2Ge2 as compared with SrNi2Ge2 and SrNi2As2: first principles calculations

    Full text link
    Very recently the new low-temperature (TC ~ 3K) superconductor (SC) SrPd2Ge2 has been reported. This compound is isostructural with curently intensively studied group of so-called "122" SC's (based on tetragonal AM2Pn2 phases, where A are Sr, Ba; M are d metals and Pn are pnictogens: As or P), but it is pnictogen-free. Here, by means of first-principle FLAPW-GGA calculations, we have studied the electronic structure of new SC SrPd2Ge2. The band structure, total and partial densities of states and Fermi surface topology for SrPd2Ge2 are evaluated and discussed in comparison with those of isostructural SrNi2Ge2 and SrNi2As2 phases.Comment: 9 pages, 3 figure

    VO2: a two-fluid incoherent metal?

    Full text link
    We present {\it ab initio} LDA+DMFT results for the many-particle density of states of VO2VO_{2} on the metallic side of the strongly first-order (TT-driven) insulator-metal transition. In strong contrast to LDA predictions, there is {\it no} remnant of even correlated Fermi liquid behavior in the correlated metal. Excellent quantitative agreement with published photoemission and X-ray absorption experiments is found in the metallic phase. We argue that the absence of FL-quasiparticles provides a natural explanation for the bad-metallic transport for T>340KT > 340 K. Based on this agreement, we propose that the I-M transition in VO2VO_{2} is an orbital-selective Mott transition, and point out the relevance of orbital resolved one-electron and optical spectroscopy to resolve this outstanding issue.Comment: 4 pages, 3 figure

    Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

    Full text link
    Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.Comment: 15 pages, 8 figures, to appear in Appl. Surf. Sc
    corecore