311 research outputs found

    Nitrènes et amination de liaisons C(sp³)-H : applications en synthèse et développement de nouvelles conditions oxydantes

    Get PDF
    Catalytic nitrene transfers are useful tools in organic synthesis for the efficient conversion of a C-H bond into a C-N bond. In this context, our group has recently reported the use of sulfonimidamides as efficient chiral nitrene precursors in the rhodium-catalyzed stereoselective C-H amination of hydrocarbons. These PhD studies follow on from this work; it aims, on one hand, at applying the catalytic C-H amination in total synthesis, and, on the other hand, at searching for more sustainable reactions conditions. The first part of the manuscript reports our initial investigations devoted to the synthesis of Dibromophakellstatine. The strategy was based on a key step of C-H amination of a pseudo benzylic position but did not prove successful. A second application deals with the synthesis of polycyclic nitrogen compounds that relies on the catalytic C-H amination of enol ethers and benzocyclobutenes. A 3- to 4-step scheme, thus, allows the efficient access to perhydroindole scaffolds that are isolated in good yields and excellent diastereoselectivity. The second part deals with the search for sustainable reaction conditions that will avoid the use of stoichiometric amounts of hypervalent iodine reagents. These are indeed responsible for the production of excess iodobenzene. A first approach involves the use of haloamines as nitrene precursors but it did not lead to satisfying results. Attention has thus been paid to the use of benign oxidants allowing the in situ generation of an iodine(III) species from PhI. An extensive screening of reagents and reaction parameters has led to uncover a first significant result in the case of indan that, however, does not prove reproducible.Les transferts de nitrène représentent un outil synthétique très intéressant pour former simplement une liaison C-N à partir d’une liaison C-H. Notre laboratoire a développé des précurseurs de nitrène chiraux : les sulfonimidamides. Leur utilisation a abouti, en présence de catalyseurs de rhodium, à des réactions d’amination C-H hautement diastéréosélectives. Ce projet de thèse s’inscrit dans la continuité de ces travaux. Dans un premier temps, la synthèse totale de la Dibromophakellstatine a été envisagée, impliquant comme étape clé, une étape d’amination C-H en position pseudo benzylique. Le projet n’ayant pas abouti, une séquence réactionnelle de quelques étapes a été développée à partir de l’amination C-H d’éthers d’énols et de benzocyclobutènes. Ainsi, plusieurs motifs perhydroindoles ont pu être préparés avec de bons rendements et d’excellentes diastéréosélectivités dans la plupart des cas. Dans le cadre d’une chimie plus éco-compatible, il a ensuite été envisagé de limiter l’introduction d’iode hypervalent dans les conditions de l’amination C-H. Pour cela, une première approche a consisté à utiliser les haloamines comme précurseurs de nitrène, cependant sans résultat satisfaisant. Une autre alternative a été d’introduire un oxydant, respectueux de l’environnement, permettant la réoxydation de l’iodobenzène formé en cours de réaction en une espèce de nouveau réactive (I(III)). De même, ces derniers résultats plutôt décevants ne permettent pas de s’affranchir de l’introduction de dérivé iodé en quantité stoechiométrique

    Coordinated gene expression during gilthead sea bream skeletogenesis and its disruption by nutritional hypervitaminosis A

    Get PDF
    Background: Vitamin A (VA) has a key role in vertebrate morphogenesis, determining body patterning and growth through the control of cell proliferation and differentiation processes. VA regulates primary molecular pathways of those processes by the binding of its active metabolite (retinoic acid) to two types of specific nuclear receptors: retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which promote transcription of downstream target genes. This process is well known in most of higher vertebrates; however, scarce information is available regarding fishes. Therefore, in order to gain further knowledge of fish larval development and its disruption by nutritional VA imbalance, the relative expression of some RARs and RXRs, as well as several genes involved in morpho- and skeletogenesis such as peroxisome proliferator-activated receptors (PPARA, PPARB and PPARG); retinol-binding protein (RBP); insulin-like growth factors I and II (IGF1 and IGF2, respectively); bone morphogenetic protein 2 (Bmp2); transforming growth factor beta-1 (TGFB1); and genes encoding different extracellular matrix (ECM) proteins such as matrix Gla protein (mgp), osteocalcin (bglap), osteopontin (SPP1), secreted protein acidic and rich in cysteine (SPARC) and type I collagen alpha 1 chain (COL1A1) have been studied in gilthead sea bream. Results: During gilthead sea bream larval development, specific expression profiles for each gene were tightly regulated during fish morphogenesis and correlated with specific morphogenetic events and tissue development. Dietary hypervitaminosis A during early larval development disrupted the normal gene expression profile for genes involved in RA signalling (RARA), VA homeostasis (RBP) and several genes encoding ECM proteins that are linked to skeletogenesis, such as bglap and mgp. Conclusions: Present data reflects the specific gene expression patterns of several genes involved in larval fish RA signalling and skeletogenesis; and how specific gene disruption induced by a nutritional VA imbalance underlie the skeletal deformities. Our results are of basic interest for fish VA signalling and point out some of the potential molecular players involved in fish skeletogenesis. Increased incidences of skeletal deformities in gilthead sea bream fed with hypervitaminosis A were the likely ultimate consequence of specific gene expression disruption at critical development stages

    Salinity reduction benefits European eel larvae: Insights at the morphological and molecular level

    Get PDF
    European eel (Anguilla anguilla) is a euryhaline species, that has adapted to cope with both, hyper- and hypo-osmotic environments. This study investigates the effect of salinity, from a morphological and molecular point of view on European eel larvae reared from 0 to 12 days post hatch (dph). Offspring reared in 36 practical salinity units (psu; control), were compared with larvae reared in six scenarios, where salinity was decreased on 0 or 3 dph and in rates of 1, 2 or 4 psu/day, towards iso-osmotic conditions. Results showed that several genes relating to osmoregulation (nkcc2α, nkcc2β, aqp1dup, aqpe), stress response (hsp70, hsp90), and thyroid metabolism (thrαA, thrαB, thrβB, dio1, dio2, dio3) were differentially expressed throughout larval development, while nkcc1α, nkcc2β, aqp3, aqp1dup, aqpe, hsp90, thrαA and dio3 showed lower expression in response to the salinity reduction. Moreover, larvae were able to keep energy metabolism related gene expression (atp6, cox1) at stable levels, irrespective of the salinity reduction. As such, when reducing salinity, an energy surplus associated to reduced osmoregulation demands and stress (lower nkcc, aqp and hsp expression), likely facilitated the observed increased survival, improved biometry and enhanced growth efficiency. Additionally, the salinity reduction decreased the amount of severe deformities such as spinal curvature and emaciation but also induced an edematous state of the larval heart, resulting in the most balanced mortality/deformity ratio when salinity was decreased on 3 dph and at 2 psu/day. However, the persistency of the pericardial edema and if or how it represents an obstacle in further larval development needs to be further clarified. In conclusion, this study clearly showed that salinity reduction regimes towards iso-osmotic conditions facilitated the European eel pre-leptocephalus development and revealed the existence of highly sensitive and regulated osmoregulation processes at such early life stage of this species

    Vitamin A affects flatfish development in a thyroid hormone signaling and metamorphic stage dependent manner

    Get PDF
    Vitamin A (VA) and retinoid derivatives are known morphogens controlling vertebrate development. Despite the research effort conducted during the last decade, the precise mechanism of how VA induces post-natal bone changes, and particularly those operating through crosstalk with the thyroid hormones (THs) remain to be fully understood. Since effects and mechanisms seem to be dose and time-dependent, flatfish are an interesting study model as they undergo a characteristic process of metamorphosis driven by THs that can be followed by external appearance. Here, we studied the effects of VA imbalance that might determine Senegalese sole (Solea senegalensis) skeletogenetic phenotype through development of thyroid follicles, THs homeostasis and signaling when a dietary VA excess was specifically provided during pre-, pro-or post-metamorphic stages using enriched rotifers and Artemia as carriers. The increased VA content in enriched live prey was associated to a higher VA content in fish at all developmental stages. Dietary VA content clearly affected thyroid follicle development, T3 and T4 immunoreactive staining, skeletogenesis and mineralization in a dose and time-dependent fashion. Gene expression analysis showed that VA levels modified the mRNA abundance of VA- and TH-specific nuclear receptors at specific developmental stages. Present results provide new and key knowledge to better understand how VA and TH pathways interact at tissue, cellular and nuclear level at different developmental periods in Senegalese sole, unveiling how dietary modulation might determine juvenile phenotype and physiology.Ministry of Education and Culture (MEC) of the Spanish Government [AGL2005-02478]; [SFRH/BPD/82049/2011]info:eu-repo/semantics/publishedVersio

    Effect of thermal and nutritional conditions on fatty acid metabolism and oxidative stress response in juvenile European sea bass (Dicentrarchus labrax)

    Get PDF
    Coastal nursery areas are subjected to a wide range of natural and anthropogenic stressors, including global warming, which indirectly influence trophic food webs. A global rarefaction of n-3 polyunsaturated fatty acids (PUFA) in trophic networks is in progress. The aim of this study was to assess the effect of a reduction in the dietary availability of n-3 PUFA on some molecular and biochemical parameters related to lipid metabolism and oxidative stress response in juvenile European sea bass (Dicentrarchus labrax) raised at two temperatures (15 °C and 20 °C). Fish were fed for five months with a reference diet (RD; 1.65% n-3 PUFA on a dry matter basis, DM), used as a proxy of trophic networks where n-3 PUFA is plentiful, and a lower n-3 PUFA diet (LD; 0.73% n-3 PUFA DM), designed to mimic a decrease in n-3 PUFA resulting from global changes (the n-3 PUFA levels tested remained above the nutritional minimum required for this species). Results showed that diet did not affect the hepatic expression of some mRNA coding for transcriptional factors involved in regulating the metabolic pathways related to fatty acid bioconversion. Although our molecular analysis was limited to transcript expression, these data suggest the presence of a threshold in the nutritional supply of PUFA above which the activation of these molecular pathways does not occur. However, the expression for most of the transcripts tested was up-regulated at 20 °C. Despite the high peroxidation index in fish fed RD, very few modifications of the oxidative stress response were associated with diet. At 20 °C, an increase of the enzymatic antioxidant response was observed, but there was no correlation with the peroxidation index or malondialdehyde products

    Temperature induced variation in gene expression of thyroid hormone receptors and deiodinases of European eel (Anguilla anguilla) larvae

    Get PDF
    Thyroid hormones (THs) are key regulators of growth, development, and metabolism in vertebrates and influence early life development of fish. TH is produced in the thyroid gland (or thyroid follicles) mainly as T4 (thyroxine), which is metabolized to T3 (3, 5, 3’-triiodothyronine) and T2 (3, 5-diiodothyronine) by deiodinase (DIO) enzymes in peripheral tissues. The action of these hormones is mostly exerted by binding to a specific nuclear thyroid hormone receptor (THR). In this study, we i) cloned and characterized thr sequences, ii) investigated the expression pattern of the different subtypes of thrs and dios, and iii) studied how temperature affects the expression ofthose genes in artificially produced early life history stages of European eel (Anguilla anguilla), reared in different thermal regimes (16, 18, 20 and 22°C) from hatch until first-feeding. We identified 2 subtypes of thr (thrα and thrβ) with 2 isoforms each (thrαA, thrαB, thrβA, thrβB) and 3 subtypes of deiodinases (dio1, dio2, dio3). All thr genes identified showed high similarity to the closely related Japanese eel (Anguilla japonica). We found that all genes investigated in this study were affected by larval age (in real time or at specific developmental stages), temperature, and/or their interaction. More specifically, the warmer the temperature the earlier the expression response of a specific target gene. In real time, the expression profiles appeared very similar and only shifted with temperature. In developmental time, gene expression of all genes differed across selected developmental stages, such as at hatch, during teeth formation or at first-feeding. Thus, we demonstrate that the expression of thrs and dios show sensitivity to temperature and are involved in and during early life development of European eel

    Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing

    Get PDF
    Despite considerable progress in recent years, many questions regarding fish larval nutrition remain largely unanswered, and several research avenues remain open. A holistic understanding of the supply line of nutrients is important for developing diets for use in larval culture and for the adaptation of rearing conditions that meet the larval requirements for the optimal presentation of food organisms and/or microdiets. The aim of the present review is to revise the state of the art and to pinpoint the gaps in knowledge regarding larval nutritional requirements, the nutritional value of live feeds and challenges and opportunities in the development of formulated larval diets.Norwegian Ministry of Fisheries; Research Council of Norway [CODE-199482, GutFeeling-190019]; Spanish Ministry of Science and Innovation MICINN + FEDER/ERDF [AGL2007-64450-C02-01, CSD2007-0002]; project HYDRAA [PTDC/MAR/71685/2006]; Fundacao para a Ciencia e a Tecnologia (FCT), Portugal; FEDER; EC [LIFECYCLE- 222719]; EU RTD [FA0801]info:eu-repo/semantics/publishedVersio

    Ontogeny of the circadian system during embryogenesis in rainbow trout (Oncorhynchus mykiss) and the effect of prolonged exposure to continuous illumination on daily rhythms of per1, clock, and aanat2 expression

    Get PDF
    It is widely held that the development of the circadian system during embryogenesis is important for future survival of an organism. Work in teleosts has been, to date, limited to zebrafish, which provides little insight into the diversity of this system within such a large vertebrate class. In this study, we analyzed the diel expression of per1, clock, and aanat2 in unfertilized rainbow trout oocytes and embryos maintained under either a 12:12 light:dark (LD) cycle or continuous illumination (LL) from fertilization. 24-h profiles in expression were measured at fertilization as well as 8, 21 42, and 57 days postfertilization (dpf). Both per1 and clock were expressed in unfertilized oocytes and all embryonic stages, while aanat2 expression was only measureable from 8 dpf. A reduction in both per1 and clock mean expression level between unfertilized oocytes/0-1dpf embryos and 8-9dpf embryos was suggestive of a transition from maternal RNA to endogenous mRNA expression. While aanat2 expression was not clearly associated with photic conditions, photoperiod treatment did alter the expression of per1 and clock expression/rhythmicity from as early as 8 dpf (per1), which could suggest the presence and functionality of an as yet unidentified “photoreceptor”. As a whole, this work demonstrates that clock systems are present and functional during embryonic development in rainbow trout. Further studies of their expression and regulation will help understand how the environment interacts with embryonic development in the species

    The Korowai Framework: Assessing GE through the Values the ART Confederation Associates with Ngarara

    Get PDF
    The aim of this thesis is to assess genetic engineering (GE) through the values that the Confederation of Te Ati Awa, Ngati Raukawa ki te tonga and Ngati Toarangatira (the ART Confederation) associates with ngarara. The Korowai Framework was developed to conduct this assessment. Interviews were conducted with 14 participants from across the ART Confederation on the values they associate with ngarara and their interpretations of GE. The values associated with ngarara that were identified in the interviews, were used constitute the kaupapa of the Korowai Framework. The key values identified are: mauri, whakapapa, tohu, tapu, and kaitiakitanga. It emerged from the interviews that ngarara appeal to us to be conscious of our intricately bound connection to and dependency on living systems. The assessment through the Korowai Framework found that the outcomes of GE do not uphold the values associated with ngarara. Participants articulated significant concerns that GE confounds the ART Confederation's control over their relationship with the world around them. This thesis has demonstrated that the Korowai Framework can be used as a tool for the Confederation to get to the decision making table with a comprehensive evidence based understanding of the people's position on GE from which they can negotiate. It demonstrates that robust and legitimate assessment of GE can be conducted using theories, methodologies, kaupapa, tikanga, and frameworks that are specific to the ART Confederation
    corecore