26 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    The role of connectivity in Australian conservation

    Full text link
    The existing system of nature reserves in Australia is inadequate for the long-term conservation and restoration of native biological diversity because it fails to accommodate, among other elements, large scale and long-term ecological processes and change, including physical and biotic transport in the landscape. This paper is an overview of the connectivity elements that inform a scientific framework for significantly improving the prospects for the long-term conservation of Australia's biodiversity. The framework forms the basis for the WildCountry programme. This programme has identified connectivity at landscape, regional and continental scales as a critical component of an effective conservation system. Seven categories of ecological phenomena are reviewed that require landscape permeability and that must be considered when planning for the maintenance of biological diversity and ecological resilience in Australia: (1) trophic relations at regional scales; (2) animal migration, dispersal, and other large scale movements of individuals and propagules; (3) fire and other forms of disturbance at regional scales; (4) climate variability in space and time and human forced rapid climate change; (5) hydroecological relations and flows at all scales; (6) coastal zone fluxes of organisms, matter, and energy; and, (7) spatially-dependent evolutionary processes at all scales. Finally, we mention eight cross-cutting themes that further illuminate the interactions and implications of the seven connectivity-related phenomena for conservation assessment, planning, research, and management, and we suggest how the results might be applied by analysts, planners, scientists, and community conservationists
    corecore