30 research outputs found
Chemical constituents, and pharmacological and toxicological effects of Cynomorium songaricum: An overview
Purpose: To review the chemical constituents, and the pharmacological and toxicological effects of Cynomorium songaricum (C. songaricum) and explore its potentials for further development as an alternative medicine.Methods: A large number of research articles related to “Cynomorium songaricum” “pharmacological effects”, “toxicological effects” and “chemical composition” in English and Chinese language were retrieved through an extensive literature review using various electronic databases including Medline(1966 - 2017) and EMBASE (1980 - 2017).Results: Ethyl acetate and aqueous extracts of C. songaricum have promising pharmacological activities, due to the presence of various flavonoids, triterpenes and polysaccharides. In addition to promising effects against inflammation, aging, fatigue, viruses and cancer,/ihas a protective effect on the nervous system and regulates hormones and immune functions. Oxidative regulation of hormone levels has a certain correlation with its pharmacological activities, e.g., cognitive functions, but its mechanism is not yet known, indicating the need for further research. Toxicity studies on C. songaricum have shown that it is not genotoxic to animals, but further toxicological studies are required to ascertain its safety in clinical use.Conclusion: C. songaricum is a biologically important plant which has many proven bioactivities; however, it requires further studies to determine the mechanistic aspects of its pharmacological effects.Keywords: Cynomorium, Chemical constituents, Inflammation, Aging, Fatigue, Virus, Tumor, Toxicological effec
Orchid Biochemistry
Orchids are fascinating, with attractive flowers that sell in the markets and an increasing demand around the world. Additionally, some orchids are edible or scented and have long been used in preparations of traditional medicine.This book presents recent advances in orchid biochemistry, including original research articles and reviews. It provides in-depth insights into the biology of flower pigments, floral scent formation, bioactive compounds, pollination, and plant–microbial interaction as well as the biotechnology of protocorm-like bodies in orchids. It reveals the secret of orchid biology using molecular tools, advanced biotechnology, multi-omics, and high-throughput technologies and offers a critical reference for the readers.This book explores the knowledge about species evolution using comparative transcriptomics, flower spot patterning, involving the anthocyanin biosynthetic pathways, the regulation of flavonoid biosynthesis, which contributes to leaf color formation, gene regulation in the biosynthesis of secondary metabolites and bioactive compounds, the mechanism of pollination, involving the biosynthesis of semiochemicals, gene expression patterns of volatile organic compounds, the symbiotic relationship between orchids and mycorrhizal fungi, techniques using induction, proliferation, and regeneration of protocorm-like bodies, and so on. In this book, important or model orchid species were studied, including Anoectochilus roxburghii, Bletilla striata, Cymbidium sinense, Dendrobium officinale, Ophrys insectifera, Phalaenopsis ‘Panda’, Pleione limprichtii
Guidelines for the use and interpretation of assays for monitoring autophagy (2nd edition)
In 2008 we published the first set of guidelines for standardiz- ing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new tech- nologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in differ- ent organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes..
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes.
For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy.
Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagyrelated protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Bibliometric Studies and Worldwide Research Trends on Global Health
Global health, conceived as a discipline, aims to train, research and respond to problems of a transboundary nature, in order to improve health and health equity at the global level. The current worldwide situation is ruled by globalization, and therefore the concept of global health involves not only health-related issues, but also those related to the environment and climate change. Therefore, in this Special Issue, the problems related to global health have been addressed from a bibliometric approach in four main areas: environmental issues, diseases, health, education and society