94 research outputs found

    Behaviour Analysis of Left-Turning Mopeds at Signal Controlled Intersections – A Case Study in Yancheng City

    Get PDF
    Mopeds (electric bicycles and light motorcycles) are commonly used as a personal transportation mode in China. However, the understanding of characteristics of left-turning mopeds at signal-controlled intersections has been relatively limited. To bridge this gap, firstly, this paper proposed a video conversion method of moped movement data acquisition. Then, a method of data accuracy verification was introduced by comparing the results between the field experiment and the video conversion method. Secondly, the ideal traffic space for left-turn mopeds from different entrances was defined to analyse the characteristics of the left-turning mopeds at intersections. Further, three indicators, namely, transverse distance, the proportion of left-turning mopeds with crossing behaviour, and the average number of avoidance behaviour, were proposed and used to analyse the asymmetrical characteristics behaviour, crossing behaviour, and avoidance behaviour. Finally, based on empirical data collected from five signal-controlled intersections, the proposed methods and behaviours were analysed. This paper provides both a valid method of obtaining the position data of mopeds and a reliable basis for improving the safety of left-turning moped riders at urban signal-controlled intersections

    Incident laser modulation by tool marks on micro-milled KDP crystal surface: Numerical simulation and experimental verification

    Get PDF
    © 2019 Elsevier Ltd Micro-milling has been accepted as the most promising method to repair the micro-defects on the surface of KH2PO4 (KDP) optics. However, surface tool marks are inevitably introduced during the micro-milling repairing process, and could possess great potential risks in lowering the laser-induced damage threshold of KDP optics. The primary cause of laser damage growth of nonlinear crystals has been considered as its internal light intensification. In this work, how the tool marks impact the incident laser modulation as well as the laser-induced damage resistance of micro-milled KDP optics was theoretically and experimentally investigated. The results indicate that periodic tool marks can cause diffraction effect and result in significant relative light intensity modulation (IRmax), up to 5.6 times higher than that inside smooth crystal surfaces. Although the change trends of IRmax with respect to tool marks on both surfaces of KDP optics are similar, the IRmax induced by the rear-surface tool marks is nearly twice higher than that induced by the front-surface tool marks, which means the rear surface with tool marks are more vulnerable to be damaged. The period of tool marks determines the modulation degree and distribution patterns of light intensity inside KDP crystal while the residual height of tool marks can only slightly regulate the modulation degree of light intensity. The tool marks with a period of 1 μm normally give rise to serious light intensification and should be strictly excluded, while the period of tool marks from 10 μm to 20 μm is conducive to the laser damage resistance of micro-milled KDP optics, which were verified by the tests of transmittance capacity and laser damage resistance, and is supposed to be preferred in the actual repairing process of full-aperture KDP optics

    Mechanism of chip formation and surface-defects in orthogonal cutting of soft-brittle potassium dihydrogen phosphate crystals

    Get PDF
    Micromachining repair of surface defects on KH2PO4 (KDP) optics is an emerging technique in the construction of Inertial Confinement Fusion facilities for obtaining clean nuclear fusion energy. However, this method is yet facing considerable challenges owing to the soft-brittle nature of single-crystal KDP, hence it is necessary to understand its ductile-regime cutting mechanism to generate crack-free surfaces. This paper seeks to investigate the evolution of different cutting mechanism with the change of uncut chip thickness (UCT) in KDP orthogonal cutting processes. A transition of cutting modes from plastic cutting to shear-crack cutting and then fracture cutting with the rise of UCT has been revealed. To explain these cutting phenomena, a novel theoretical model was proposed by calculating the specific energy dissipation for crack/fracture propagations during cutting processes based on fracture mechanics. This analytical model was well validated by the analysis of cutting forces and machined surface quality. Nevertheless, three kinds of surface defects have been observed, i.e. micro pits, micro craters and edge chipping. These surface defects were caused by tearing and spalling of materials with elastic recovery, crack propagation along cleavage planes with ploughing effect, and the peeling away of large-size fracture, respectively. The presented results of great significance for promoting the application of micromachining processes in future engineering repair of KDP optics

    Double-Stranded RNA-Dependent Protein Kinase Regulates the Motility of Breast Cancer Cells

    Get PDF
    Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC) significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3). PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK) and its downstream MAPK-activated protein kinase 2 (MK2). PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580) or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1), an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway

    Preparation and Characterization of Silkworm Pupa SourcePeptide-zinc Nanoparticles

    Get PDF
    Silkworm pupa peptide (SCP) was prepared by enzymatic hydrolysis and then chelated with soluble zinc ions to obtain silkworm pupa peptide-zinc chelates (SCP-Zn), so as to develop safe and easily absorbable zinc supplements and improve the utilization value of silkworm pupa. Taking the zinc chelating capacity as an index, the optimum preparation process of SCP-Zn was determined, and the structure of both SCP and SCP-Zn were characterized by ultraviolet spectrum, fluorescence spectra, scanning electron microscopy, elemental analysis, particle size analysis and Fourier transform infrared spectrum. The results showed that the chelation rate of silkworm chrysalis peptide was 58.05% under the conditions of 1% alkaline protease plus enzyme, pH8.0, temperature 50 ℃ and enzymatic hydrolysis time 6 h. The optimum preparation conditions for preparation of SCP-Zn nanoparticles were as follows: Mass ratio of zinc peptide 1:0.5, pH6.5, 55 ℃, time 20 min, and the chelation rate of zinc reached 72.63%. The results of ultraviolet spectrum and fluorescence spectrum showed that zinc ions successfully combined with SCP. The obtained chrysalis SCP-Zn belongs to nanoparticles with an average particle size of 71.99 nm, with uniform granular structure on the surface, and the relative content of zinc reached 37.46%. The -COOH, -NH2 and -C=O in the peptide chain were the main binding sites of Zn2+ and SCP. The results indicated that silkworm pupa was a good raw material for preparation of zinc chelates. The study provides a theoretical basis for enriching organic zinc supplement resources and the high value utilization of silkworm pupa

    Fractal Analysis on Machined Surface Morphologies of Soft-Brittle KDP Crystals Processed by Micro Ball-End Milling

    Get PDF
    The micro-defects on KH2PO4 (KDP) optic surfaces are mainly repaired by the micro-milling technique, while it is very easy to introduce brittle cracks on repaired surfaces, as KDP is soft and brittle. To estimate machined surface morphologies, the conventional method is surface roughness, but it fails to distinguish ductile-regime machining from brittle-regime machining directly. To achieve this objective, it is of great significance to explore new evaluation methods to further characterize machined surface morphologies. In this study, the fractal dimension (FD) was introduced to characterize the surface morphologies of soft-brittle KDP crystals machined by micro bell-end milling. The 3D and 2D fractal dimensions of the machined surfaces and their typical cross-sectional contours have been calculated, respectively, based on Box-counting methods, and were further discussed comprehensively by combining the analysis of surface quality and textures. The 3D FD is identified to have a negative correlation with surface roughness (Sa and Sq), meaning the worse the surface quality the smaller the FD. The circumferential 2D FD could quantitively characterize the anisotropy of micro-milled surfaces, which could not be analyzed by surface roughness. Normally, there is obvious symmetry of 2D FD and anisotropy on the micro ball-end milled surfaces generated by ductile-regime machining. However, once the 2D FD is distributed asymmetrically and the anisotropy becomes weaker, the assessed surface contours would be occupied by brittle cracks and fractures, and corresponding machining processes will be in a brittle regime. This fractal analysis would facilitate the accurate and efficient evaluation of the repaired KDP optics by micro-milling

    Formation mechanism of a smooth, defect-free surface of fused silica optics using rapid CO2 laser polishing

    Get PDF
    Surface defects introduced by conventional mechanical processing methods can induce irreversible damage and reduce the service life of optics applied in high-power lasers. Compared to mechanical processing, laser polishing with moving beam spot is a noncontact processing method, which is able to form a defect-free surface. This work aims to explore the mechanism of forming a smooth, defect-free fused silica surface by high-power density laser polishing with coupled multiple beams. The underlying mechanisms of laser polishing was revealed by numerical simulations and the theoretical results were verified by experiments. The simulated polishing depth and machined surface morphology were in close agreement with the experimental results. To obtain the optimized polishing quality, the effects of laser polishing parameters (e.g. overlap rate, pulse width and polishing times) on the polishing quality were experimentally investigated. It was found that the processing efficiency of fused silica materials by carbon dioxide (CO2) laser polishing could reach 8.68 mm2 s−1, and the surface roughness (Ra) was better than 25 nm. Besides, the cracks on pristine fused silica surfaces introduced by initial grinding process were completely removed by laser polishing to achieve a defect-free surface. The maximum laser polishing rate can reach 3.88 μm s−1, much higher than that of the traditional mechanical polishing methods. The rapid CO2 laser polishing can effectively achieve smooth, defect-free surface, which is of great significance to improve the surface quality of fused silica optics applied in high-power laser facilities

    Experimental and theoretical investigation of localized CO2 laser interaction with fused silica during the process of surface damage mitigation

    Get PDF
    Localized CO2 laser repairing of surface damage on fused silica optics has been successfully applied in high-power laser system in the field of controllable nuclear fusion. In order to accurately predict the surface topography evolution and to reveal the intrinsic physical mechanism during the process of laser mitigation, experiments of localized CO2 laser mitigation were firstly carried out to analyze the features of mitigated craters under different laser powers. Then a multi-physics coupled mathematical model was developed based on the fluid control equation, heat and mass transfer equation and material phase transition kinetics to investigate the thermodynamic and kinetic behaviors of laser interaction with silica. The model considered the effects of Marangoni convection, gravity, capillary force and vaporization recoil pressure, as well as the nonlinear variation of physical parameters of silica material with respect to temperature. The results showed that with the increase of laser power, the material ablation and the appearance of raised rim occurred simultaneously. The depth of the mitigated crater increased sharply when the threshold for material ablation was attained, while the lateral dimension increased linearly. The vaporization recoil pressure was found to be the dominant factor for the formation of Gaussian crater with the raised rim feature. The capillary force caused the material at the edge of the molten pool to have a tendency to reflow after laser shutting down, but it was too small to change the surface topography. This work could significantly contribute to the understanding of laser mitigation process, which laid the foundation for the accurate prediction and evaluation of surface quality of CO2 laser repaired fused silica surface

    The association of long-term trajectories of BMI, its variability, and metabolic syndrome: a 30-year prospective cohort study

    Get PDF
    Background Limited data exists on how early-life weight changes relate to metabolic syndrome (MetS) risk in midlife. This study examines the association between long-term trajectories of body mass index (BMI), its variability, and MetS risk in Chinese individuals. Methods In the Hanzhong Adolescent Hypertension study (March 10, 1987–June 3, 2017), 1824 participants with at least five BMI measurements from 1987 to 2017 were included. Using group-based trajectory modeling, different BMI trajectories were identified. BMI variability was assessed through standard deviation (SD), variability independent of the mean (VIM), and average real variability (ARV). Logistic regression analyzed the relationship between BMI trajectory, BMI variability, and MetS occurrence in midlife (URL: https://www.clinicaltrials.gov; Unique identifier: NCT02734472). Findings BMI trajectories were categorized as low-increasing (34.4%), moderate-increasing (51.8%), and high-increasing (13.8%). Compared to the low-increasing group, the odds ratios (ORs) [95% CIs] for MetS were significantly higher in moderate (4.27 [2.63–6.91]) and high-increasing groups (13.11 [6.30–27.31]) in fully adjusted models. Additionally, higher BMI variabilities were associated with increased MetS odds (ORs for SDBMI, VIMBMI, and ARVBMI: 2.30 [2.02–2.62], 1.22 [1.19–1.26], and 4.29 [3.38–5.45]). Furthermore, BMI trajectories from childhood to adolescence were predictive of midlife MetS, with ORs in moderate (1.49 [1.00–2.23]) and high-increasing groups (2.45 [1.22–4.91]). Lastly, elevated BMI variability in this period was also linked to higher MetS odds (ORs for SDBMI, VIMBMI, and ARVBMI: 1.24 [1.08–1.42], 1.00 [1.00–1.01], and 1.21 [1.05–1.38]). Interpretation Our study suggests that both early-life BMI trajectories and BMI variability could be predictive of incident MetS in midlife

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore