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ARTICLE INFO ABSTRACT

Localized CO, laser repairing of surface damage on fused silica optics has been successfully applied in high-
power laser system in the field of controllable nuclear fusion. In order to accurately predict the surface topo-
graphy evolution and to reveal the intrinsic physical mechanism during the process of laser mitigation, ex-
periments of localized CO, laser mitigation were firstly carried out to analyze the features of mitigated craters
under different laser powers. Then a multi-physics coupled mathematical model was developed based on the
fluid control equation, heat and mass transfer equation and material phase transition kinetics to investigate the
thermodynamic and kinetic behaviors of laser interaction with silica. The model considered the effects of
Marangoni convection, gravity, capillary force and vaporization recoil pressure, as well as the nonlinear var-
iation of physical parameters of silica material with respect to temperature. The results showed that with the
increase of laser power, the material ablation and the appearance of raised rim occurred simultaneously. The
depth of the mitigated crater increased sharply when the threshold for material ablation was attained, while the
lateral dimension increased linearly. The vaporization recoil pressure was found to be the dominant factor for
the formation of Gaussian crater with the raised rim feature. The capillary force caused the material at the edge
of the molten pool to have a tendency to reflow after laser shutting down, but it was too small to change the
surface topography. This work could significantly contribute to the understanding of laser mitigation process,
which laid the foundation for the accurate prediction and evaluation of surface quality of CO, laser repaired
fused silica surface.
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Introduction and excellent light transmission. This CO, laser repairing method can

effectively improve the laser damage resistance of fused silica optics as

In view of the high absorption rate of fused silica to CO, lasers with
specific wavelength, as well as the improvement of laser power, CO,
laser is used to locally melt or even evaporate the material to form a
functional specific structure or morphology on the surface of fused si-
lica components. This type of processing has been widely used in sci-
entific research and industrial production, such as precision machining
of optical components [1], processing of optical fibers [2], fabrication
of optical micro-lens array and holographic structure [3,4], polishing of
optical component surface [5]. In recent years, localized CO, laser re-
pairing of micro-defects on the surface of fused silica optics applied in
high-power laser devices is getting more and more attention, such as
surface damage mitigation [6-9] and repairing of surface scratches
[10,11]. It has been widely accepted that CO, laser repairing can
greatly inhibit the growth of surface damage with small mitigation area

* Corresponding authors at: P.O. Box 413, Harbin 150001, China.

well [12,13], which has been successfully applied in high-power laser
systems in the field of controllable nuclear fusion, such as USA National
Ignition Facility [14], France Laser Mega-Joule [15], China huge laser
facility [16].

In the process of practical localized CO, laser repairing of surface
damage, small damage pits on the surface of fused silica optics can be
irradiated continuously by CO, laser with a wavelength of 10.6 um to
melt the material and heal the cracks at the bottom of pits, forming a
smooth Gaussian crater to achieve the purpose of laser damage growth
mitigation [17,18]. However, a raised rim structure will be formed
around the mitigated pit in the actual repairing process, and this
morphological feature may induce a strong optical modulation to the
laser propagation, which is harmful to operation of downstream optics
[19]. Moreover, if not treated in time, the deposited debris on the
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surface due to the evaporation of material will induce new damage
under subsequent laser irradiation [20-22]. Therefore, the surface to-
pography and surface quality of the mitigation region are important
indicators for evaluating the mitigation effect of the fused silica optics,
which is an urgent challenge to be solved.

Many researchers had performed a substantial amount of experi-
ments on CO, laser melting mitigation, mainly focusing on the analysis
of the influence of repairing parameters on surface topography features,
performance evaluation of mitigation area and establishment of re-
pairing strategy [7,23-25]. Dai et al. [17] measured the evolution of
craters under different laser beam diameters, irradiation times and laser
powers. Robin et al. [26] used infrared camera to measure the surface
temperature of fused silica under different laser power, and established
a theoretical model for the calculation of the depth of mitigation pit.
Jiang et al. [27] analyzed the evolution of the mitigated crater during
the CO, laser mitigation process and the influence of the heat affected
zone on laser propagation and chemical etching rate. On the other
hand, some researchers used numerical simulation to study the ther-
modynamic and kinetic behaviors of fused silica irradiated by CO,
laser, such as heating and melting, material flowing, evaporation ab-
lation [28]. Feit et al. [29] firstly established theoretical models for
heating, evaporation, material flowing, crack healing during CO, laser
mitigation, and studied the influence of nonlinear heat transfer on
temperature distribution of fused silica. It was found that the effect of
recoil force, melt flow and crack healing would affect the final surface
quality. Yang et al. [8] compared the mitigation effect with laser wa-
velengths of 4.6 um and 10.6 pm, and obtained the fictive temperature
distribution and the size of the heat affected zone. It was concluded that
CO,, laser with a wavelength of 4.6 um had a better mitigation effect on
surface damage with deeper cracks. Doualle et al. [30,31] carried out
2D and 3D thermo-mechanical simulations of CO,, laser interaction with
fused silica, and obtained the temperature distribution, material ejec-
tion and residual stress distribution, these results were consistent with
the analysis obtained by infrared temperature measurement, profilo-
metry, and photo-elastic measurement. He et al. [5] studied the in-
trinsic physical mechanism of laser polishing fused silica surface by
establishing a multi-physics transient model coupled with heat transfer
and fluid flow, and analyzed the effects of surface tension, Marangoni
effect, light pressure and gravity on surface smoothing. It was found
that surface tension played a decisive role in polishing quality.

The above studies show that CO, laser interaction with fused silica
is a complex multi-physics coupling process. The material chron-
ologically undergoes different stages of heating, softening, viscous flow,
evaporation ablation, and cooling freezing. It involves the heat transfer
of phase change and the nonlinear variation of physical properties of
silica material. At different stages, there are many intrinsic factors that
influence the evolution of the surface topography, such as Marangoni
effect, gravity, capillary force, and vaporization recoil pressure, and all
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of which change with the laser action time. The current studies focus on
the optimization of processing parameters of CO, laser mitigation and
the evaluation of mitigation effects. On the other hand, the theoretical
research mainly focuses on the derivation of mathematical models, the
thermodynamic calculations of laser irradiating fused silica, and the
dynamic analysis of laser polishing fused silica. There are few calcu-
lations for thermodynamics and kinetics behaviors of fused silica during
the process of laser mitigation. All of previous models ignored the effect
of vaporization recoil pressure on mitigated crater formation, however
which always appears along with material ablation. It can be concluded
that the surface topography evolution of the mitigated crater on the
surface of the fused silica optics have been not systematically studied,
as well as the intrinsic physical mechanism of crater formation is still
unclear, which are huge obstacles for the improvements of mitigation
effect and batch stability of CO, laser repaired fused silica surfaces.
Additionally, the influence law between various intrinsic factors (e.g.,
Marangoni effect, capillary force, and vaporization recoil pressure)
urgently need to be further clarified.

In this work, the morphology features of mitigated pits were firstly
analyzed through CO, laser mitigation experiments, and the mapping
relationship between processing parameters and size of mitigated cra-
ters was investigated. To further study the process of surface topo-
graphy evolution and reveal the formation mechanism of mitigated
craters, a multi-physics coupled mathematical model was developed
based on the fluid control equation, heat and mass transfer equation
and material phase transition kinetics to investigate the thermodynamic
and kinetic behaviors of laser interaction with silica. The model con-
sidered the effects of Marangoni effect, gravity, capillary force and
vaporization recoil pressure, as well as the nonlinear variation of ma-
terial physical parameters with respect to temperature. The influence
law between various intrinsic factors during different stages of laser
interaction with fused silica was studied. This work could significantly
contribute to the understanding of laser mitigation process, which laid
the foundation for the accurate prediction and evaluation of surface
quality of CO, laser repaired fused silica surface.

Experiments of localized CO, laser mitigation
Experimental method

The samples used in the experiments were made of Corning 7980
fused silica glasses and polished to make the surface quality meet re-
quirements, all of which were in the shape of cuboid with length of
50 mm, width of 50 mm and thickness of 5 mm. The damage pits were
fabricated on the surface of fused silica samples irradiated by ultra-
violet laser with wavelength of 355 nm, pulse width of 8 ns, focal spot
area of 3 mm? and laser intensity of 20 J/cm?. The surface topographies
of pits were observed by Nikon ECLIPSE E600 optical microscope and
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Fig. 1. Original laser damage site on fused silica surface. (a) Morphology observation measured by optical microscope; (b) Three-dimensional appearance measured

by optical profiler.
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Fig. 2. The microscope micrographs of mitigated pits under different laser powers measured by optical microscope.

optical profiler, one of which is shown in Fig. 1. This kind of damage pit
belongs to the “violet” type, with the lateral dimension of about
260 pm, and the longitudinal depth of about 60 um.

The laser used in surface damage mitigation experiments was CW
CO, laser with wavelength of 10.6 um, spatial Gaussian distribution,
and spot diameter of about 2 mm at 1/e2. The laser powers were set to
be 27 W, 28 W, 29 W, 30 W, 31 W, 32 W in turn, and the irradiation
time at each power was 5 s. Bright-field detection system was used to
on-line monitor the status of damage sites during the repairing process.
Taylor Hobson profiler was used to measure the two-dimensional
morphology of mitigated pits.

Experimental results and analysis

The microscope observations of the mitigated pits obtained by CO,
laser processing with different laser powers are shown in Fig. 2. It can
be clearly observed that the sizes of the mitigated pits increase with the
laser power. Some redeposited debris appear around the crater at the
power of 29 W, which indicates that material evaporation ablation
occurs during the mitigation process. Fig. 2 shows that the higher the
power is, the more severe the ablation is, and the worse the mitigation
effect gets.

Fig. 3 exhibits the profiles of the mitigated pits shown in Fig. 2. It
can be seen that an obvious raised rim and a bright annular ring appear
around the mitigated pit when the laser power increases to 29 W, which
is the laser power at which material ablation occurs. With the increase
of laser power, the raised rim becomes higher and higher, and the an-
nular ring gets brighter and brighter. It can be concluded that the
material ablation and the formation of raised rim occur simultaneously
during the laser mitigation process. Additionally, the more severe the
material ablation is, the more obvious the rim feature will be. It in-
dicates that there is an inevitable connection between material ablation
and the formation of raised rim, however which was not studied before.
And it can’t be reasonably explained only by experiments. Therefore, it
is necessary to carry out systematic research on surface topography
evolution of the mitigated pit and intrinsic physical mechanism during
the laser interaction with fused silica through numerical simulation.
These contents will be elaborated in Sections “Modeling of localized
CO, laser mitigation” and “Results and discussions”.

The sizes of mitigated pits under different laser powers are shown in
Fig. 4.

It can be seen that as the laser power increases, the depth of the
mitigated pits increases exponentially. When the laser power exceeds

29 W, the depth of the mitigated pit increases sharply due to the oc-
currence of material ablation. The relationship between material abla-
tion and the surface topography evolution will be further studied next.
By fitting the data points, the lateral dimension increases linearly with
the increase of laser power. This indicates that a slight change in laser
power will cause a large variation in depth of the mitigated pit under
the same laser irradiation time. Thus, the stability of the laser power is
extremely important in the process of laser damage mitigation process.

Modeling of localized CO, laser mitigation
Mathematical model

Physical model and assumptions

The schematic of localized CO, laser mitigation of surface damage
on fused silica optics is shown in Fig. 5. The thermo-mechanical in-
teraction between CO, laser and fused silica, which involves heat
transfer, fluid flow and evaporation ablation, is a multi-physics cou-
pling process. When the surface damage site is irradiated by CO, laser
beam, the temperature of fused silica rises rapidly over melting point
and the molten pool will be formed. Then, the melted material tends to
redistribute to heal the cracks at the bottom of the damage site and to
flow outwards. Simultaneously, evaporation ablation occurs when the
substrate temperature exceeds vaporization point. The vaporization
recoil pressure induced by escaping silica vapor acts on the surface of
the molten pool, which further causes material to flow outwards and
sequentially accumulate around the damage site. The final surface to-
pography with the feature of deep crater and raised rim largely depends
on the hydrodynamic evolution of the free surface during the laser
damage mitigation process.

In order to comprehensively study the surface topography evolution
and intrinsic physical mechanism during CO, laser mitigation surface
damage of fused silica optics, a mathematical model has been estab-
lished based on the following assumptions:

(1) The fused silica material is homogeneous and isotropic.

(2) Flowing fluid is treated as an incompressible Newtonian fluid, and
only laminar flow is considered.

(3) The problems including fluid flow and heat transfer are mainly
concentrated on the characterization of solid-liquid phase conver-
sion. The third phase (fused silica vapor) has been included in the
boundary conditions.

(4) Laser energy absorbed by the substrate is considered to be a surface
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Fig. 3. The profiles of the mitigated pits under different laser powers measured by Taylor Hobson profiler.

heat flux rather than a volumetric heat source.
(5) Fused silica vapor is treated as an ideal gas, ignoring the absorption
of laser energy by the sprayed exhalation.

Governing equations
The temperature field can be obtained by solving the following
equation [30]:

06, 4 o, (@-VT) = V-GV T)

at (@]

where p is the density, T is the absolute temperature, k is the thermal
conductivity, C,is the heat capacity and U represents the flow velocity,
which can be solved by the Navier-Stokes equation [32]:

67 — -
p; +po(U-V)u
= V[—pl + u(VT) + (VE)] = p( = B(T = T,))T + F )

where p is the pressure, u is the dynamic viscosity, f8 is the thermal
expansion coefficient, T,, is the melting temperature, I is identity
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Fig. 5. The schematic of localized CO, laser mitigation of surface damage.
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-
matrix, g is the gravity acceleration. F is the Darcy damping force,
which can be defined as:

T

¢ +b) )
0, TS T,

f=17-0 LST<T
1, T>7T 4)

where b is a coefficient to avoid the division by zero, T; and T; represent
solidus and liquidus temperatures, respectively.
For incompressible flow, the continuity equation is expressed as:

pV-(@) =0 5)

Numerical model

Geometry

In order to save computing resources and reduce calculation time,
two-dimensional axisymmetric geometry is regarded as the computa-
tional domain, which is shown in Fig. 6. The calculation model is es-
tablished based on the fluid control equation, heat and mass transfer
equation and material phase transition kinetics, which consider the
effects of Marangoni convection, gravity, capillary force and vapor-
ization recoil pressure, as well as the nonlinear variation of material
physical parameters with respect to temperature.

Boundary conditions

All boundary conditions of the computational domain are marked in
Fig. 6. In terms of heat transfer, boundary 1 is the symmetry axis. The
conditions of boundary 2 are laser heat flux, heat convection and heat
radiation, which are described below:

—kVT =al = h[T = Tym] — €B[T* = Tjy] )

where h is the natural convection coefficient, ¢ is the emissivity, B is the
Stefan-Boltzmann constant, T, is the ambient temperature, and I is
the laser intensity with gaussian distribution, which is defined as:

_ 2 2
_O-op 2674y
r?

exp( p ) * exp(—az)

(7)
where P is the laser power, r is the laser beam radius, ¢ is the Fresnel
reflection coefficient, a is the laser absorption coefficient, calculated
from the equation below.
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o= 4rny
T2 ®)

where n; and A represent the imaginary part of the refractive index and
the laser wavelength, respectively.

Boundary 3 and boundary 4 are considered to the heat losses of
convection and radiation, controlled by follow equation:

—kVT = h[T = Tym)] + €0 [T* = Tap] )

While boundary 5 is treated as thermal insulation, expressed as:
VT =0 (10)

In terms of fluid flow, boundary 2 is defined as a freely deformed
surface. On this surface, the thermal capillary force (Marangoni effect)
acts on the tangential direction, which is related to the temperature
gradient. While the capillary force acts on the normal direction, and its
strength is proportional to the curvature of the surface profile. In this
work, surface tension is a function of temperature that can be expressed
as:

oc=0y—y(T - Tp) an

where oy is the surface tension coefficient, vy is the temperature deri-
vative of surface tension, T,, is the melting temperature.
The normal component of surface tension can be expressed as:

G, = koW (12)

While in the tangential direction,

ar *’ 13)

Egs. (12) and (13) represent the capillary force and the thermal
capillary force, respectively. Where « is the curvature of surface profile,
V; Tis the temperature gradient.

Boundaries 3,4,5 are set for no-slip wall.

When the substrate temperature exceeds the vaporization point,
evaporation ablation of fused silica material occurs, and the vaporized
particles carry away a part of the heat flux, which can be expressed as
[33]

qevap = M, X L, (14)

where L, is the latent heat of vaporization, and M, is the mass flow rate
of vapor, which is a function of surface temperature T, and can be
described as follow:

m
M, = \/7 X Psat(T) X (1 - 5y)
27k, T (15)
where m is the atomic mass, k; is the Boltzmann constant, g, is the
diffusion coefficient, taking 8. = 0.17, Py, is the vapor pressure, which is
given by

M,L,( 1 1
Pt (T) = By X exp(#(_ - _))

R \T T (16)

where M, is the molecular mass, R is the ideal gas constant, T, is the
evaporation temperature, P, is the standard atmospheric pressure. The
vaporization recoil pressure can be expressed as:

Fam, 0ST<T,

Becoit = {1
{*f X Ba(T), T> T, a7

All the boundary conditions are listed in Table 1.

Properties of fused silica and parameters of model

During CO, laser irradiation, the computational model takes the
nonlinear variation of material physical properties with respect to
temperature into consideration, such as the heat conductivity K(T)
[34], heat capacity C,(T) [30], and dynamic viscosity n(T) [35], as
shown in Fig. 7.
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Table 1
Boundary conditions of numerical model of CO, laser interaction with fused
silica.
Physics Physical condition Boundary Boundary condition
Heat transfer Laser irradiation 2 Heat flux
Natural convection 2,3,4 Convection
Radiation 2,3,4 Diffuse surface
Insulation 5 Thermal insulation
Fluid flow Normal stress 2 Capillary force
Tangential stress 2 Marangoni effect
Recoil pressure 2 Vaporization recoil pressure
Wall 3,4,5 No-slip wall
Axis 1 Axial symmetry

As shown in Egs. (1) and (2), thermal conductivity and heat capa-

city are key parameters in heat transfer calculation, while dynamic
viscosity directly affects the characteristics of fluid flow. In this work,
numerical model has taken bidirectional coupling between properties of
fused silica and temperature into consideration. Other physical prop-
erties of fused silica used in this work are shown in Table 2.

The laser used in simulation is CW CO, laser with wavelength of
10.6 um, spatial Gaussian distribution, and spot diameter of about
2 mm at 1/e2. The laser power is set to be 28 W, and the irradiation time
is 10 s. CO, laser parameters and constants used for simulation are
listed in Table 3.

Results and discussions
Temperature fields of fused silica during CO, laser irradiation

When CW CO, laser irradiates the surface of fused silica, the tem-
perature of substrate increases gradually with the laser energy absorbed
by material. As the laser irradiation time increases to 1.3 s, the center
temperature of substrate exceeds the melting temperature of 2273 K.
Then the center material begins to melt, and the melted region expands
to the inside of the bulk material as the laser keeps on acting. When the
surface temperature reaches to the evaporation point of 2973 k at the
laser heating time of 6.5 s, the central material begins to undergo
evaporation and ablation, the area of which gradually increases. The
distributions of temperature field at various heating times are shown in
Fig. 8(a)-(c).

The temperature distributions during cooling stage are shown in
Fig. 8(d)—(f). It can be seen that when the laser is off, the substrate
temperature decreases sharply due to the huge heat dissipation of
convection and radiation between substrate and surroundings. Soon,
the substrate temperature is completely below the melting point and
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Table 2

Properties of fused silica.
Property (unit) Symbol  Value Reference
Melting temperature (K) T 2273 [36]
Evaporation temperature (K) T 2973 [36]
Density (kg/m>) o 2201 [36]
Latent heat of melting (J/kg) L 1.23 x 10° [37]
Latent heat of evaporation (J/kg) L, 1.14 x 107 [271
Laser absorption coefficient a 0.8 [28]
Radiation emissivity e 0.8 [37]1
Surface tension coefficient (N/m?) o) 0.38 [32]
Temperature derivative of surface tension (N/ a“/aT —6x107° [32]

(m’K)

Molecular weight (g/mol) M 40 [26]
Thermal expansion coefficient (K~ ') B 5% 1077 [26]

Table 3

CO,, laser parameters and constants used for simulation.
Parameter(unit) Symbol Value
Laser power (W) P 28
Beam size (mm) r 2
Ambient temperature (K) Tamb 297.15
Ambient atmospheric pressure (N/m?) Bamp 101,300
Stefan-Boltzmann constant (W/(m?>K*)) o 5.67 X 108
Ideal gas constant (J/ (mol ‘K)) R 8.314
Gravity acceleration (m/s?) g 9.81

the molten region disappears at the cooling time of 0.13 s.

Surface topography evolution and intrinsic physical mechanism during laser
damage mitigation process

From above analysis of temperature distribution, the substrate un-
dergoes the processes of heating, melting, evaporation, cooling, and
solidification throughout the laser action. Fig. 9 shows the process of
material phase transition during laser heating and cooling. The white
arrows in figures indicate the velocity vector. It can be seen that the
molten region of the substrate expands and the solid-liquid phase in-
terface continuously moves to the inside of the bulk as the temperature
increases. At the same time, the effects of Marangoni convection and
the thermal capillary force increase due to the rising of tangential
temperature gradient. However, the surface deformation of the molten
region caused by the Marangoni effect is very small because of the large
viscosity of fused silica, as shown in Fig. 9(a). As the evaporation and
ablation of the central material occur, the resulting vaporization recoil
pressure acts perpendicularly on the surface of the molten region,
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Fig. 7. Temperature dependent material properties of fused silica. (a) Heat capacity and thermal conductivity; (b) Dynamic viscosity.
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which is much larger than the thermal capillary force. The molten
material begins to move outwards from the center under the combined
effects of vaporization recoil pressure, Marangoni effect and gravity.
However, since the viscosity of fused silica increases rapidly along the
radial direction, the outward material accumulates at the periphery to
form a raised rim, and the central region appears a Gaussian pit topo-
graphy, as shown in Fig. 9(b). Accompanied with the formation of the
crater with raised rim, the capillary force begins to act inside the
molten pool, and its strength is proportional to the curvature of the
surface profile. The direction of capillary force is downward for the
negative curvature surface and upward for the positive curvature sur-
face, which hinders the surface deformation of the molten pool. As the
laser irradiation time increases, the solid-liquid phase interface keeps
moving to inside, and the material of central region continues to be
ablated and to move outwards. The depth of the crater and the height of
the raised rim become larger and larger, meanwhile the capillary force
generated by the increasing of surface curvature also becomes non-
negligible, which has a certain hindrance to the outward movement of
material. However, the velocity vector is still outward since the capil-
lary force is still smaller than the vaporization recoil pressure, as shown
in Fig. 9(c). When the laser shutting down, the substrate temperature
sharply decreases below the evaporation temperature, and the vapor-
ization recoil pressure disappears. At this time, the direction of capillary
force in the raised region is downward, while the capillary force in the
bottom of the crater is upward. Therefore, the molten material has a
tendency to flow back from the height under the action of the capillary
force, so the velocity vector is inward. However, the capillary force is
too small to change the surface topography, as shown in Fig. 9(d). On
the other hand, the solid-liquid phase interface moves outwards from
inside of the bulk rapidly, and the area capillary force acting on be-
comes smaller and smaller until the molten region disappears com-
pletely, as shown in Fig. 9(e) and (f).
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Fig. 11. The evolution curves of surface topography during CO, laser irradia-
tion for 10 s. The applied laser power is 28 W, and laser beam diameter is 2 mm.

The solid-liquid phase interfaces at different times during the laser
heating and cooling stages are extracted as shown in Fig. 10.

It can be seen from Fig. 10(a) and (b) that the speed of the solid-
liquid phase interface moving inwards decreases gradually during the
laser heating time varying from 1 s to 10 s. It is because that the heat
absorbed by substrate from the laser reduces as the depth increases. As
a result, the melting rate of the material gets slower and slower as
shown in Eq. (7). Moreover, the variation range of the radial position of
the solid-liquid phase interface is larger than that of the depth position.
Nevertheless, the growth rates of radial and depth positions both get
more and more gentle.

It can be seen from Fig. 10(c) and (d) that the speed of the solid-
liquid phase interface moving outwards increases gradually during the
cooling time varying from O s to 0.13 s after laser shutting down. It
indicates that the cooling rate is getting faster and faster. The reason is
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Fig. 10. The distributions of solid-liquid phase interface at different times during laser heating and cooling stages. (a) (c) Solid-liquid phase interface; (b) (d) Radial
and depth position of solid-liquid phase interface. (a) and (b) are in case of heating stage; (c) and (d) are in case of cooling stage.
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that the closer the molten region is to the surface, the faster the heat
dissipation is. This phenomenon is exactly the opposite case of the laser
heating process. Additionally, the radial and depth positions of the
solid-liquid phase interface decrease more and more rapidly. The var-
iation range of radial position is also larger than that of the depth di-
rection.

Fig. 11 shows the evolution curves of the surface topography of the
fused silica under the irradiation of CO, laser. It can be seen that the
surface is almost free of deformation at initial stage of laser heating.
When the heating time exceeds 6 s, both the depth of the crater and the
height of raised rim increase gradually. Meanwhile, the position of
maximum bulge moves to the outside, and a Gaussian crater is formed.
The intrinsic mechanism of its formation can be observed in Fig. 9.

It can be concluded from above analysis that the material ablation
and the formation of raised rim occur simultaneously due to the
dominant factor of vaporization recoil pressure, which is exactly the
same as the experimental conclusions shown in Fig. 2. Additionally, the
more severely the material ablation occurs, the greater the vaporization
recoil pressure gets, and the more obviously the rim feature appears. It
also can be concluded that in addition to material ablation removal, the
sharp increase of vaporization recoil pressure along with ablation is
another reason for the abrupt growth of the depth of mitigated pit. The
simulation results are good indication of the underlying causes of this
phenomenon. On the other hand, the evolutions of surface Gaussian
topography are also consistent with experimental observations shown
in Fig. 3. However, the larger raised rim feature will cause strong light
field distortion and local light intensification, leading to the component
itself to be damaged again under the irradiation of subsequent laser.
Therefore, the most basic method to improve the laser damage
threshold of fused silica is reducing material ablation during laser mi-
tigation process. According to above analysis, a lower laser power with
longer action time or variable laser power at different stages are pre-
ferred in practical localized CO2 laser repairing of surface damage. On
the other hand, the laser power and laser action time should be selected
under the premise of completely removing the damage pit and sur-
rounding cracks. It also needs to ensure that there are not bubbles ap-
peared in the bottom of the mitigated crater, and the heat affected zone
will not has an effect on the laser damage threshold of the optics.

Evolutions of surface topography and solid-liquid phase interface
during laser heating time from 7 s to 10 s are illustrated in Fig. 12. It
can be seen that the descending depth d; of the Gaussian crater is
smaller than the moving depth d; of the solid-liquid phase interface.
The reason is that a part of material at the bottom of the crater is ab-
lated by evaporation. The moving distance d, of the raised rim is ap-
proximately twice the moving distance d4 of solid-liquid phase inter-
face. This is because the heating efficiency at the edge of the Gaussian
laser beam is much lower than that at the center, while the effect of the

(a)
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vaporization recoil pressure at the central region remains constant. In
other words, the melting rate of the substrate is reduced, while the
speed at which the material flows outwards does not change a lot. The
resulting maximum height of the raised rim h is 10.7 um. The figure
embedded in Fig. 12 is the curves of the height and radial positions of
raised rim versus time. It can be seen that the height of the raised rim
increases linearly with time from 7 s to 10 s, while the increasing speed
of the radial position of the maximum bulge gets more and more gentle,
which is related to the expansion speed of the molten pool.

Melt flow of fused silica interaction with CO, laser

The velocity fields of the molten pool during laser heating and
cooling processes are shown in Fig. 13. It can be seen that the flow
velocity gets larger and larger with laser irradiation. In the initial stage,
the velocity is only 10 m/s orders of magnitude, its direction is out-
ward due to the effect of the thermal capillary force, as shown in
Fig. 13(a). Then, the velocity rapidly increases to 10® m/s orders of
magnitude under the combined actions of vaporization recoil pressure
and thermal capillary force, its direction is still outward, as shown in
Fig. 13(b) and (c). Fig. 13(d)—(f) illustrate the velocity fields after laser
shutting down. The molten material has a tendency to reflow because of
the capillary force, and the velocity vector is inward. Besides, the ve-
locity is reduced from 10°® m/s orders of magnitude to 10® m/s after
laser shutting down, which is too small to change the surface topo-
graphy.

From above analysis, the maximum velocity and its radial and depth
positions constantly change during the whole process, both of which are
plotted in Fig. 14. It can be seen from Fig. 14(a) that the maximum
velocity increases slowly in the initial stage. As laser heating for 6 s, the
maximum velocity increases rapidly due to the action of vaporization
recoil pressure on the surface of molten pool, and then it remains
constant after heating time of 7 s. The radial position of the maximum
velocity decreases rapidly at 6 s, then gradually increases from 6.5 s.
While the depth position of the maximum velocity decreases rapidly
from 6 s to 7 s, then remains stable. The reason of these variations is
that the maximum velocity appears at the edge of Gaussian crater due
to the action of vaporization recoil pressure from about 6 s. As the
Gaussian crater expanding and material flowing outwards, the position
where the maximum velocity occurs also moves outwards, which al-
ways appears near the edge of the crater.

It can be seen from Fig. 14(b) that the maximum velocity firstly
decreases rapidly during the cooling time of 0 to 0.03 s. Then, the
maximum velocity tends to zero slowly. Meanwhile, the radial and
depth positions of the maximum velocity decrease rapidly, which in-
dicates that the maximum velocity moves from the edge of the Gaussian
crater to the bottom. However, there is a slight fluctuation in the radial
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and depth positions during the cooling time of 0.06 to 0.11 s, which
may be the result of the interaction of the capillary force and the
temperature gradient.

Conclusion

In this work, the surface topography evolution and intrinsic physical
mechanism of localized CO, laser repairing of surface damage on fused
silica optics are investigated by means of experiments and numerical
simulations. The influence law between various intrinsic factors during
different stages of laser interaction with fused silica is also obtained.
The conclusions can be drawn below:

(1) As the laser power increases, the material ablation and the forma-
tion of raised rim occur simultaneously. The depth of the mitigated
crater increases sharply from 29 W, while the lateral dimension
increases linearly. Thus, the stability of the laser power is extremely
important in the practical CO, laser mitigation process.

(2) Substrate temperature increases gradually during laser heating

process, while it decreases sharply after laser shutting down. The

fused silica undergoes the processes of heating, melting, evapora-
tion, cooling, and solidification throughout the laser mitigation
process.

The vaporization recoil pressure is the dominant factor for forming

a Gaussian crater with a raised rim feature, which could be a good

explanation for the phenomena observed in the experiments. The

capillary force causes the material at the edge of the molten pool to
have a tendency to reflow after laser shutting down, but it is too
small to change the surface topography.

3

10

(4) The speed of the solid-liquid phase interface moving inward de-
creases gradually with heating time, while the speed moving out-
wards increases during cooling time. The variation range of the
radial position of the solid-liquid phase interface is larger than that
of the depth position.

(5) The outward flow velocity of the molten pool increases rapidly to
10® m/s under the combined action of vaporization recoil pressure
and thermal capillary force, which is much larger than the reflow
velocity. The maximum velocity and its position change constantly
during the whole process.
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