711 research outputs found

    Dark Matter Halo Environment for Primordial Star Formation

    Full text link
    We study the statistical properties (such as shape and spin) of high-z halos likely hosting the first (PopIII) stars with cosmological simulations including detailed gas physics. In the redshift range considered (11<z<1611 < z < 16) the average sphericity is =0.3±0.1 = 0.3 \pm 0.1, and for more than 90% of halos the triaxiality parameter is T0.4T \lesssim 0.4, showing a clear preference for oblateness over prolateness. Larger halos in the simulation tend to be both more spherical and prolate: we find sMhαss \propto M_h^{\alpha_s} and TMhαTT \propto M_h^{\alpha_T}, with αs0.128\alpha_s \approx 0.128 and αT=0.276\alpha_T= 0.276 at z = 11. The spin distributions of dark matter and gas are considerably different at z=16z=16, with the baryons rotating slower than the dark matter. At lower redshift, instead, the spin distributions of dark matter and gas track each other almost perfectly, as a consequence of a longer time interval available for momentum redistribution between the two components. The spin of both the gas and dark matter follows a lognormal distribution, with a mean value at z=16 of =0.0184 =0.0184, virtually independent of halo mass. This is in good agreement with previous studies. Using the results of two feedback models (MT1 and MT2) by McKee & Tan (2008) and mapping our halo spin distribution into a PopIII IMF, we find that at high-zz the IMF closely tracks the spin lognormal distribution. Depending on the feedback model, though, the distribution can be centered at 65M\approx 65 M_\odot (MT1) or 140M\approx 140 M_\odot (MT2). At later times, model MT1 evolves into a bimodal distribution with a second prominent peak located at 3540M35-40 M_\odot as a result of the non-linear relation between rotation and halo mass. We conclude that the dark matter halo properties might be a key factor shaping the IMF of the first stars.Comment: 10 pages, 6 figures, accepted for publication in MNRA

    Hydrothermally Processed Oxide Nanostructures and Their Lithium–ion Storage Properties

    Get PDF
    Y- and Si-based oxide nanopowders were synthesized by a hydrothermal reaction of Y or Si powders with NaOH or LiOH aqueous solution. Nanoparticles with different morphology such as elongated nanospheres, flower-like nanoparticles and nanowires were produced by a control of processing parameters, in particular, the starting composition of solution. The preliminary result of electrochemical examination showed that the hydrothermally processed nanowires exhibit high initial capacities of Li-ion storage: 653 mAh/g for Y2O3 nanowires as anode materials and 186 mAh/g for Li2Si2O5 nanowires as cathode materials in a Li secondary cell. Compared to the powder with elongated sphere or flower-like shapes, the nanowires showed a higher Li-ion capacity and a better cycle property

    From tagging to theorizing: deepening engagement with cultural heritage through crowdsourcing

    Get PDF
    Crowdsourcing, or “obtaining information or services by soliciting input from a large number of people,” is becoming known for the impressive productivity of projects that ask the public to help transcribe, describe, locate, or categorize cultural heritage resources. This essay argues that crowdsourcing projects can also be a powerful platform for audience engagement with museums, offering truly deep and valuable connection with cultural heritage through online collaboration around shared goals or resources. It includes examples of well-designed crowdsourcing projects that provide platforms for deepening involvement with citizen history and citizen science; useful definitions of “engagement”; and evidence for why some activities help audiences interact with heritage and scientific material. It discusses projects with committed participants and considers the role of communities of participants in engaging participants more deeply

    On the stability of multibreathers in Klein-Gordon chains

    Get PDF
    In the present paper, a theorem, which determines the linear stability of multibreathers in Klein-Gordon chains, is proven. Specifically, it is shown that for soft nonlinearities, and positive inter-site coupling, only structures with adjacent sites excited out-of-phase may be stable, while only in-phase ones may be stable for negative coupling. The situation is reversed for hard nonlinearities. This theorem can be applied in nn-site breathers, where nn is any finite number and provides an O(ϵ)\cal{O}(\sqrt{\epsilon}) estimation of the characteristic exponents of the solution. To complement the analysis, we perform numerical simulations and establish that the results are in excellent agreement with the theoretical predictions, at least for small values of the coupling constant ϵ\epsilon

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues

    Get PDF
    In this article, we review gas sensor application of one-dimensional (1D) metal-oxide nanostructures with major emphases on the types of device structure and issues for realizing practical sensors. One of the most important steps in fabricating 1D-nanostructure devices is manipulation and making electrical contacts of the nanostructures. Gas sensors based on individual 1D nanostructure, which were usually fabricated using electron-beam lithography, have been a platform technology for fundamental research. Recently, gas sensors with practical applicability were proposed, which were fabricated with an array of 1D nanostructures using scalable micro-fabrication tools. In the second part of the paper, some critical issues are pointed out including long-term stability, gas selectivity, and room-temperature operation of 1D-nanostructure-based metal-oxide gas sensors

    Preparation and characterization of dye-sensitized TiO2 nanorod solar cells

    Get PDF
    TiO2 nanorods were prepared by DC reactive magnetron sputtering technique and applied to dye-sensitized solar cells (DSSCs). The length of the TiO2 nanorods was varied from 1 μm to 6 μm. The scanning electron microscopy images show that the nanorods are perpendicular to the substrate. Both the X-ray diffraction patterns and Raman scattering results show that the nanorods have an anatase phase; no other phase has been observed. (101) and the (220) diffraction peaks have been observed for the TiO2 nanorods. The (101) diffraction peak intensity remained constant despite the increase of nanorod length, while the intensity of the (220) diffraction peak increased almost linearly with the nanorod length. These nanorods were used as the working electrodes in DSSCs and the effect of the nanorod length on the conversion efficiency has been studied. An optimum photoelectric conversion efficiency of 4.8% has been achieved for 4 μm length nanorods

    A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors

    Get PDF
    One-dimensional (1D) metal-oxide nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating size and dimensionality dependence of nanostructure properties for potential applications. The construction and integration of photodetectors or optical switches based on such nanostructures with tailored geometries have rapidly advanced in recent years. Active 1D nanostructure photodetector elements can be configured either as resistors whose conductions are altered by a charge-transfer process or as field-effect transistors (FET) whose properties can be controlled by applying appropriate potentials onto the gates. Functionalizing the structure surfaces offers another avenue for expanding the sensor capabilities. This article provides a comprehensive review on the state-of-the-art research activities in the photodetector field. It mainly focuses on the metal oxide 1D nanostructures such as ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, In2O3, CdO, CeO2, and their photoresponses. The review begins with a survey of quasi 1D metal-oxide semiconductor nanostructures and the photodetector principle, then shows the recent progresses on several kinds of important metal-oxide nanostructures and their photoresponses and briefly presents some additional prospective metal-oxide 1D nanomaterials. Finally, the review is concluded with some perspectives and outlook on the future developments in this area

    Disrupting education using smart mobile pedagogies

    Full text link
    © Springer Nature Switzerland AG 2019. As mobile technologies become more multifaceted and ubiquitous in society, educational researchers are investigating the use of these technologies in education. A growing body of evidence shows that traditional pedagogies still dominate the educational field and are misaligned with the diverse learning opportunities offered by the use of mobile technologies. There is an imperative to question those traditional notions of education, including how, where and when teaching and learning are enacted, and to explore the possible mediating roles of new mobile technologies. New smart pedagogies, which embrace the affordances offered by mobile technologies, have the potential to disrupt notions of schooling. In this chapter, we examine the nature of smart pedagogies and their intersection with mobile pedagogies. We unpack notions of innovation and disruption. We then discuss smart mobile learning activities for school students identified from a Systematic Literature Review, together with the pedagogical principles underpinning them. We argue to encourage smart pedagogies, teacher educators should support teachers to implement ‘feasible disruptions’. Consequently, implications for teacher education are explored

    Galaxy Formation Theory

    Full text link
    We review the current theory of how galaxies form within the cosmological framework provided by the cold dark matter paradigm for structure formation. Beginning with the pre-galactic evolution of baryonic material we describe the analytical and numerical understanding of how baryons condense into galaxies, what determines the structure of those galaxies and how internal and external processes (including star formation, merging, active galactic nuclei etc.) determine their gross properties and evolution. Throughout, we highlight successes and failings of current galaxy formation theory. We include a review of computational implementations of galaxy formation theory and assess their ability to provide reliable modelling of this complex phenomenon. We finish with a discussion of several "hot topics" in contemporary galaxy formation theory and assess future directions for this field.Comment: 58 pages, to appear in Physics Reports. This version includes minor corrections and a handful of additional reference
    corecore