Abstract

We study the statistical properties (such as shape and spin) of high-z halos likely hosting the first (PopIII) stars with cosmological simulations including detailed gas physics. In the redshift range considered (11<z<1611 < z < 16) the average sphericity is =0.3±0.1 = 0.3 \pm 0.1, and for more than 90% of halos the triaxiality parameter is T0.4T \lesssim 0.4, showing a clear preference for oblateness over prolateness. Larger halos in the simulation tend to be both more spherical and prolate: we find sMhαss \propto M_h^{\alpha_s} and TMhαTT \propto M_h^{\alpha_T}, with αs0.128\alpha_s \approx 0.128 and αT=0.276\alpha_T= 0.276 at z = 11. The spin distributions of dark matter and gas are considerably different at z=16z=16, with the baryons rotating slower than the dark matter. At lower redshift, instead, the spin distributions of dark matter and gas track each other almost perfectly, as a consequence of a longer time interval available for momentum redistribution between the two components. The spin of both the gas and dark matter follows a lognormal distribution, with a mean value at z=16 of =0.0184 =0.0184, virtually independent of halo mass. This is in good agreement with previous studies. Using the results of two feedback models (MT1 and MT2) by McKee & Tan (2008) and mapping our halo spin distribution into a PopIII IMF, we find that at high-zz the IMF closely tracks the spin lognormal distribution. Depending on the feedback model, though, the distribution can be centered at 65M\approx 65 M_\odot (MT1) or 140M\approx 140 M_\odot (MT2). At later times, model MT1 evolves into a bimodal distribution with a second prominent peak located at 3540M35-40 M_\odot as a result of the non-linear relation between rotation and halo mass. We conclude that the dark matter halo properties might be a key factor shaping the IMF of the first stars.Comment: 10 pages, 6 figures, accepted for publication in MNRA

    Similar works