1,702 research outputs found

    Amplification of Primordial Magnetic Fields by Anisotropic Gravitational Collapse

    Full text link
    If a magnetic field is frozen into a plasma that undergoes spherical compression then the magnetic field B varies with the plasma density \rho according to B \propto \rho^{2/3}. In the gravitational collapse of cosmological density perturbations, however, quasi-spherical evolution is very unlikely. In anisotropic collapses the magnetic field can be a much steeper function of gas density than in the isotropic case. We investigate the distribution of amplifications in realistic gravitational collapses from Gaussian initial fluctuations using the Zel'dovich approximation. Representing our results using a relation of the form B\propto \rho^{\alpha}, we show that the median value of \alpha can be much larger than the \alpha=2/3 resulting from spherical collapse, even if there is no initial correlation between magnetic field and principal collapse directions. These analytic arguments go some way towards understanding the results of numerical simulations.Comment: 9 pages, 4 figures. Submitted to MNRA

    Relative velocity of dark matter and barions in clusters of galaxies and measurements of their peculiar velocities

    Full text link
    The increasing sensitivity of current experiments, which nowadays routinely measure the thermal SZ effect within galaxy clusters, provide the hope that peculiar velocities of individual clusters of galaxies will be measured rather soon using the kinematic SZ effect. Also next generation of X-ray telescopes with microcalorimeters, promise first detections of the motion of the intra cluster medium (ICM) within clusters. We used a large set of cosmological, hydrodynamical simulations, which cover very large cosmological volume, hosting a large number of rich clusters of galaxies, as well as moderate volumes where the internal structures of individual galaxy clusters can be resolved with very high resolution to investigate, how the presence of baryons and their associated physical processes like cooling and star-formation are affecting the systematic difference between mass averaged velocities of dark matter and the ICM inside a cluster. We, for the first time, quantify the peculiar motion of galaxy clusters as function of the large scale environment. We also demonstrate that especially in very massive systems, the relative velocity of the ICM compared to the cluster peculiar velocity add significant scatter onto the inferred peculiar velocity, especially when measurements are limited to the central regions of the cluster. Depending on the aperture used, this scatter varies between 50% and 20%, when going from the core (e.g. ten percent of the virial radius) to the full cluster (e.g. the virial radius).Comment: 17 pages, 18 figures, submitted to MNRA

    Adaptive gravitational softening in GADGET

    Full text link
    Cosmological simulations of structure formation follow the collisionless evolution of dark matter starting from a nearly homogeneous field at early times down to the highly clustered configuration at redshift zero. The density field is sampled by a number of particles in number infinitely smaller than those believed to be its actual components and this limits the mass and spatial scales over which we can trust the results of a simulation. Softening of the gravitational force is introduced in collisionless simulations to limit the importance of close encounters between these particles. The scale of softening is generally fixed and chosen as a compromise between the need for high spatial resolution and the need to limit the particle noise. In the scenario of cosmological simulations, where the density field evolves to a highly inhomogeneous state, this compromise results in an appropriate choice only for a certain class of objects, the others being subject to either a biased or a noisy dynamical description. We have implemented adaptive gravitational softening lengths in the cosmological simulation code GADGET; the formalism allows the softening scale to vary in space and time according to the density of the environment, at the price of modifying the equation of motion for the particles in order to be consistent with the new dependencies introduced in the system's Lagrangian. We have applied the technique to a number of test cases and to a set of cosmological simulations of structure formation. We conclude that the use of adaptive softening enhances the clustering of particles at small scales, a result visible in the amplitude of the correlation function and in the inner profile of massive objects, thereby anticipating the results expected from much higher resolution simulations.Comment: 15 pages, 21 figures, 1 table. Accepted for publication in MNRA

    QSO-galaxy correlations due to weak lensing in arbitrary Friedmann-Lemaitre cosmologies

    Get PDF
    We calculate the angular cross-correlation function between background QSOs and foreground galaxies induced by the weak lensing effect of large-scale structures. Results are given for arbitrary Friedmann-Lemaitre cosmologies. The non-linear growth of density perturbations is included. Compared to the linear growth, the non-linear growth increases the correlation amplitude by about an order of magnitude in an Einstein-de Sitter universe, and by even more for lower Omega_0. The dependence of the correlation amplitude on the cosmological parameters strongly depends on the normalization of the power spectrum. The QSO-galaxy cross-correlation function is most sensitive to density structures on scales in the range (1-10) Mpc/h, where the normalization of the power spectrum to the observed cluster abundance appears most appropriate. In that case, the correlation strength changes by less than a factor of <~ 2 when Omega_0 varies between 0.3 and 1, quite independent of the value of Omega_Lambda. For Omega_0 <~ 0.3, the correlation strength increases with decreasing Omega_0, and it scales approximately linearly with the Hubble constant h.Comment: revised version, accepted by MNRA

    Cluster Magnetic Fields from Galactic Outflows

    Full text link
    We performed cosmological, magneto-hydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields are galactic outflows during the star-burst phase of galactic evolution. To do this we coupled a semi-analytical model for magnetized galactic winds as suggested by \citet{2006MNRAS.370..319B} to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy clusters fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude that magnetized galactic outflows and their subsequent evolution within the intra-cluster medium can fully account for the observed magnetic fields in galaxy clusters. Our findings also suggest that measuring cosmological magnetic fields in low-density environments such as filaments is much more useful than observing cluster magnetic fields to infer their possible origin.Comment: Minor revision for publication in MNRA

    The Coma cluster magnetic field from Faraday rotation measures

    Full text link
    The aim of the present work is to constrain the Coma cluster magnetic field strength, its radial profile and power spectrum by comparing Faraday Rotation Measure (RM) images with numerical simulations of the magnetic field. We have analyzed polarization data for seven radio sources in the Coma cluster field observed with the Very Large Array at 3.6, 6 and 20 cm, and derived Faraday Rotation Measures with kiloparsec scale resolution. Random three dimensional magnetic field models have been simulated for various values of the central intensity B_0 and radial power-law slope eta, where eta indicates how the field scales with respect to the gas density profile. We derive the central magnetic field strength, and radial profile values that best reproduce the RM observations. We find that the magnetic field power spectrum is well represented by a Kolmogorov power spectrum with minimum scale ~ 2 kpc and maximum scale ~ 34 kpc. The central magnetic field strength and radial slope are constrained to be in the range (B_0=3.9 microG; eta=0.4) and (B_0=5.4 microG; eta=0.7) within 1sigma. The best agreement between observations and simulations is achieved for B_0=4.7 microG; eta=0.5. Values of B_0>7 microG and 1.0 are incompatible with RM data at 99 % confidence level.Comment: 23 pages, 21 figures. Higher resolution available at http://www.ira.inaf.it/~bonafede/paper.pdf. A&A accepte

    A New Model for Gamma-Ray Cascades in Extragalactic Magnetic Fields

    Full text link
    Very-high-energy (VHE, E \gtrsim 100 GeV) gamma rays emitted by extragalactic sources, such as blazars, initiate electromagnetic cascades in the intergalactic medium. The cascade photons arrive at the earth with angular and temporal distributions correlated with the extragalactic magnetic field (EGMF). We have developed a new semi-analytical model of the cascade properties which is more accurate than previous analytic approaches and faster than full Monte Carlo simulations. Within its range of applicability, our model can quickly generate cascade spectra for a variety of source emission models, EGMF strengths, and assumptions about the source livetime. In this Letter, we describe the properties of the model and demonstrate its utility by exploring the gamma-ray emission from the blazar RGB J0710+591. In particular, we predict, under various scenarios, the VHE and high-energy (HE, 100 MeV \lesssim E \lesssim 300 GeV) fluxes detectable with the VERITAS and Fermi Large Area Telescope (LAT) observatories. We then develop a systematic framework for comparing the predictions to published results, obtaining constraints on the EGMF strength. At a confidence level of 95%, we find the lower limit on the EGMF strength to be ~ 2 \times 10^{-16} Gauss if no limit is placed on the livetime of the source or ~ 3 \times 10^{-18} Gauss if the source livetime is limited to the past ~ 3 years during which Fermi observations have taken place.Comment: 5 pages, 5 figures, accepted for publication in Astrophysical Journal Letter
    • …