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TiO2 nanorodswere prepared by DC reactivemagnetron sputtering technique and applied to dye-sensitized solar
cells (DSSCs). The length of the TiO2 nanorods was varied from 1 μm to 6 μm. The scanning electron microscopy
images show that the nanorods are perpendicular to the substrate. Both theX-ray diffraction patterns and Raman
scattering results show that the nanorods have an anatase phase; no other phase has been observed. (101) and
the (220) diffraction peaks have been observed for the TiO2 nanorods. The (101) diffraction peak intensity
remained constant despite the increase of nanorod length, while the intensity of the (220) diffraction peak
increased almost linearly with the nanorod length. These nanorods were used as the working electrodes in
DSSCs and the effect of thenanorod length on the conversion efficiency has been studied. An optimumphotoelec-
tric conversion efficiency of 4.8% has been achieved for 4 μm length nanorods.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

A dye-sensitized solar cell (DSSC) is a promising device for using
solar energy because of its low production cost compared to those of
conventional semiconductor solar cells, and also its high light to elec-
tricity conversion efficiency [1–3]. The conventional DSSC consists of a
dye-sensitized nanoporous TiO2 coating on the transparent conducting
oxide substrate as an electrode, electrolytes containing I−/I3− redox
couple and filling the pores of the TiO2 electrode, and a platinum coun-
ter electrode placed on the top of it. The nanoporous electrodes are
generally prepared by TiO2 nanoparticles (25 nm in diameter) by sol-
gel process [4,5]. The main advantage of this nanoporous structure is
its huge surface area (more than 1000 times compared to the conven-
tional polycrystalline film), which can increase significantly the dye
adsorption and improve the photoelectric conversion efficiency. How-
ever, despite its high surface area, the disordered nanoporous structure
results in a short electron diffusion length because of the electron traps
at the contacts between nanoparticles. The diffusion coefficient of an
electron in the anatase TiO2 nanoparticle film is several orders of
magnitude lower than that in anatase TiO2 single crystal, which limits
the power conversion efficiency [6,7]. To increase the diffusion coeffi-
cient of the electrons and improve the charge transport, DSSCs using
one-dimensional (1-D) structures of TiO2 as electrodes, such as
nanotubes, nanorods and nanowires, have been recently reported
[8–21]. These 1-D structures will enhance the electron transport due
to the features of highly decreased particle to particle contacts and
elongated structure with the specified directionality [12]. Generally,
these 1-D structures aremade by chemical methods and a high temper-
ature treatment is needed, which is not suitable for flexible DSSCs
[13–15,17,18,20]. Magnetron sputtering technique has been considered
as an adequatemethod for large area depositionwith high uniformity at
a relatively low deposition temperature. The sputtering process is easily
controlled and reproduced. Generally, the TiO2 film prepared by
sputtering technique has a very compact structure, which is not suitable
for DSSC applications. In our previous works, TiO2 films with the nano-
rod structure have been prepared by dc reactive magnetron sputtering
by adjusting the sputtering parameters and were applied as electrodes
in DSSCs applications [22–26]. In this paper, the effect of the nanorod
length on the structure properties of the TiO2 films is reported. The
DSSCs have been assembled using the TiO2 filmswith different nanorod
lengths and the effect of the nanorod length on the photoelectric
properties has been studied.

2. Experimental details

The TiO2 nanorod films were prepared on the commercial indium-
tin oxide (ITO) substrates (sheet resistance of 20 Ω per square and
thickness of 100 nm) by dc reactive magnetron sputtering technique
using a commercial sputtering system equipped with a turbomolecular
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pumping system. A titaniummetal disk (60 mm in diameter and 3 mm
in thickness) with a purity of 99.99% was used as the target. After
pumping down the system to 1 × 10−3 Pa, the oxygen and argon
gases (99.99% purities) were introduced into the chamber through the
mass flow controllers. The oxygen partial pressure and the total
sputtering pressure were kept at 0.25 Pa and 2.00 Pa, respectively. The
target-substrate distance was 45 mm. The deposition time was varied
to obtain the film with different nanorod lengths. The sputtering was
carried out using a constant current mode. The sputtering current was
kept at 0.56 A and the cathode potential was about 420 V. In order to
remove the surface contaminants of the target, pre-sputtering was
done for 20 min with a shutter covering the substrate. The transmit-
tance of the films was measured using a Jasco V-550 UV–Vis spectro-
photometer. The X-ray diffraction (XRD) measurements have been
done using Rigaku miniflex goniometer for the 2θ ranging from 20° to
75° with a step of 0.02° using Cu Ka radiation operated at 30 kV and
15 mA as the incident radiation. The morphologies of the nanorods
were studied using field emission scanning electron microscope (FE-
SEM) with an operating voltage of 20 kV. Raman scattering measure-
ments have been done using a semiconductor laser and a 532 nm
laser line was used as exciting light. The laser line was focused on the
sample surface in a strict 180° backscattering geometry.

The TiO2 films were sensitized with N719 (Ru(II)L2(NCS)2:2TBA,
where L = 2,2′-bipyridyl-4,4′-dicarboxylic acid) dye by soaking the
films in an ethanolic solution of N719 dye (0.5 mM) for 24 h at room
temperature. The sputtered Pt film with 100 nm thickness and
0.3 nm/s deposition rate on an FTO glass substrate was used as the
counter-electrode. The electrolyte was composed of 0.1 M I2, 0.1 M LiI,
0.6 M 1-hexyl-3-methylimidazolium iodide, and 0.5 M 4-tert-
butylpyridine in 3-methoxypropionitrile. The photocurrent-voltage
Fig. 1. FE-SEM images of two TiO2 films with different nanorod lengths (1850 nm
measurements were carried out with a Princeton 2273 Applied
Research electrochemical system, a 500 W Xenon lamp under AM
1.5G illumination with a water filter was used. The light intensity was
adjusted to 100 mW/cm2. Cells with an active area of 0.15 cm2 were
tested.

3. Results and discussion

Fig. 1 shows the FE-SEM images of TiO2 films with different nanorod
lengths. The SEM images show vertically well-aligned densely-packed
TiO2 nanorods grown on ITO substrate. No clear variations of the struc-
ture and the dimension of these nanorods can be observed from the
images with the increase of the nanorod length. Thornton suggested
the zone classification by considering the final working pressure,
because this growth parameter can change both the kinetic energy of
the ions that arrive at the substrate and the mean free path of the parti-
cles, which allows an increase or decrease in the bombardment of the
surface of the substrate, that determines the mobility of the adatoms
in that surface [27]. The microstructure of the films prepared by
sputtering is determined by the adatom surface mobility during the
growth. At high sputtering pressure, the kinetic energy of the argon
ions will be reduced due to the decrease of the mean free path and
results in a very low adatom mobility. Therefore, the structure is domi-
nated by shadowing effects that overcome limited adatom surface
diffusion. Themost of the sputtered fluxes are deposited on high points
on thefilm,with littlematerial reaching the valleys andwill result in the
evolution of voids surrounding the rod-shaped columns structure –

nanorod array.
Fig. 2a shows the XRDpatterns of the TiO2 filmswith different nano-

rod lengths. All the films show an anatase phase and a preferred
and 4770 nm). (a) and (b): surface views; (c) and (d): cross-section views.
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Fig. 2. X-ray diffraction patterns of the sputtered TiO2 films with the different nanorod
lengths. (a) The panorama patterns; (b) the patterns without the (220) diffraction peak.
(The black solid circles represent the diffraction peaks from ITO).
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orientation along the [110] direction. It can be seen that the (220)
diffraction peak intensity increases with the nanorod length. The
relative intensity of this diffraction peak is very strongwhichmakes im-
possible to distinguish the diffraction peaks corresponding to other
planes. In order to see the other diffraction peaks, the XRD patterns of
the samples without (220) diffraction peak have been presented in
Fig. 2b. The other diffraction peaks from the anatase TiO2 can be
observed in this figure. However, the intensities of these diffraction
peaks do not show a very clear variation with the nanorod length. The
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Fig. 3. Variation of I(220)/I(101) with the nanorod length.
intensity ratio of I(220)/I(101) has been calculated for TiO2 films with
different nanorod lengths and shown in Fig. 3. A linear increase of the
ratio with the nanorod length can be observed. It means that the nano-
rod structure is favorable for the growth along the [110] direction. The
thermodynamic model is generally used to explain the preferential
growth direction of the films [28]. In the thermodynamic model, it has
been established that the growth orientation in thin films is obtained
at the thermodynamic equilibrium, which will be reached when the
total energy - the sum of surface energy and deformation energy - of
the system substrate-film has a minimum. The preferred orientation is
determined by a configuration of minimum total energy, which results
from competition between the planes with minimum deformation
energy, and the planes with minimum surface energy. The average
surface energies of the [110], [001], [100] and [101] crystal planes of an-
atase TiO2 are 1.09 J/m2, 0.90 J/m2, 0.53 J/m2 and 0.44 J/m2, respectively
[29]. In general, based on the Wulff construction, according to which
surface energy minimization drives the optimal composition of the
crystal surface, the (101) plane and the (001) plane were shown to be
the most thermodynamically stable planes of anatase crystallites [30,
31], which is also in agreement with the natural minerals. However,
the diffraction intensity of the (101) plane is very small in all the
samples. It suggests that the preferred orientation along the [110] direc-
tion is not dominated by the minimum surface energy but by the
minimum deformation energy. It has be found that, in sufficiently thin
films, the surface and interface energy minimizing textures are favored,
regardless of their strain or thermal history, and in thick films the defor-
mation energy minimizing textures are favored [32]. This implies that
the preferred orientation along the [110] direction is dominated by
the deformation energy minimizing as the peak intensity increases
with the thickness. The grain sizes along the (110) direction have
been estimated from Scherrer's formula based on the XRD data. All the
TiO2 films with different nanorod lengths present a similar grain size
value of 24 nm. It means that the increase of the growing time does
not increase the grain dimension, but increases the number of grains,
and results in an increase of the nanorod length.

Fig. 4 presents the Raman spectra of TiO2 films with different nano-
rod lengths. Five anatase TiO2 Raman peaks can be observed clearly in
the spectra which are in agreement with the results of XRD. The peaks
at around 144, 195, and 637 cm−1 are attributed to Eg modes; the
peak at 396 cm−1 is assigned to B1g mode; and the peak at 513 cm−1

consists of two modes, A1g + B1g [33]. The increase of the nanorod
length does not bring any more effects on Raman spectra except for
the peak intensity. The peak intensity increases gradually with the
nanorod length.

The specular transmittance of the TiO2 films with different nanorod
lengths are presented in Fig. 5. It can be seen that the transmittance
decreases with the increase of the nanorod length. The decrease of the
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Fig. 4. Raman spectra of TiO2 films with different nanorod lengths.
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Fig. 5. The optical transmittance spectra of TiO2 films with different nanorod lengths.
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transmittance may result from the grain boundary scattering. As all the
samples have a similar structure except for the nanorod length, the film
with longer nanorod length has more grains along the [110] direction
and this may result in an increase of the possibility of light scattering
between the grain boundaries. Fig. 5 shows that the optical absorption
edge of the TiO2 films has a red shift as the nanorod length is increased,
which indicates a decrease of the optical band gap. An indirect transition
between the top of the valence band and the bottom of the conduction
band is supposed for estimating the optical band gap Eg of the TiO2 films
with different nanorod lengths using the relation [34]

αhνð Þ12∝ hν−Eg
� �

ð1Þ

where hν is the photon energy andα is the absorption coefficient. Theα
can be calculated using the relation

α ¼ − lnT
d

ð2Þ

where T is the transmittance and d is the nanorod length. The optical
band gap of the TiO2 films was determined from the extrapolation of

the linear plot of αhνð Þ12 versus hν at α = 0. The optical band gap of
the TiO2 films with different nanorod lengths is presented in Fig. 6.
The optical band gap of the films decreases from 3.25 eV to 2.65 eV as
thenanorod length is increased from1100nmto 6060nm. The decrease
of the optical band gap with the increase of the film thickness has been
observed not only for TiO2 films but also for other kind of films [35–38].
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Fig. 6. Variation of optical band gap with the nanorod length.
The band gap is an optical property that is influenced by crystallograph-
ic parameters such as order and strain on the atomic level. The decrease
of band gap with the increase of thickness is generally attributed to the
increase of crystallite size and decrease in strain and dislocation density
[39–41]. For our TiO2 filmswith different nanorod lengths, the grain size
along the [110] direction and the distance between the (220) planes
have been calculated. The grain size is about 24 nm and the distance
between the (220) planes is 0.1339 nm, which is quite similar to the
standard value (0.1338 nm, PDF card 21-1272) for all the samples. It
means that the modification of the optical band gap in our samples
cannot be explained by strain and dislocation density. In general, the
amorphous phase has a larger optical band gap than the polycrystalline
phase for the same material [42,43]. It can be seen from the Fig. 2 that
the films with short nanorod length show a relatively weak diffraction
peak intensity. This suggests that an amorphous phase coexists in the
films, and results in the larger optical band gap. The percentage of the
amorphous phase decreases with the increase of the nanorod length
and results in a decrease of the optical band gap as shown in Fig. 6.

The DSSCs have been assembled using these TiO2 films with differ-
ent nanorod lengths as the electrodes and the photocurrent density–
photovoltaic performance of DSSCs is shown in Fig. 7. It can be seen
that the photocurrent density increases as the nanorod length is
increased from 1100 nm to 3790 nm and decreases as the nanorod
length is increased further. The open-circuit voltage has a very small
variation with the nanorod length. The DSSC with 6060 nm length of
nanorod shows the worst fill factor. The variations of the short-circuit
current density, Jsc; open-circuit voltage, Voc; fill factor, FF; and conver-
sion efficiency ηwith nanorod length are shown in Fig. 8. It can be seen
that the photocurrent density governs the conversion efficiency of the
DSSCs. The DSSC with a maximum photocurrent density has a maxi-
mum conversion efficiency (4.82%), which was achieved for DSSC
assembled using a TiO2filmwith 3790 nmnanorod length. This efficien-
cy is higher than the work reported by Liu et al. [14] who used single-
crystalline rutile TiO2 nanorods prepared by a hydrothermal method
as the electrodes. The efficiency of 3% has been achieved by using
4 μm-long TiO2 nanorod films. However, a conversation efficiency of
9.52% has been achieved by using 14 μm thickness TiO2 nanorod film
prepared by electrospinning as reported by Lee et al. [18]. Although
the conversion efficiency of this work is still not so high as some report-
ed results using TiO2 nanorods as electrodes, it is the best one for DSSC
using TiO2 nanorod prepared by magnetron sputtering method until
now. The photocurrent densitywill be generally decided by two factors:
generation and transport of the photoelectrons. The generation of the
photoelectrons is related to the amount of the dye adsorbed on the
TiO2 nanorods. In order to get a qualitative information on the dye ad-
sorption, the transmittance of dye-sensitized TiO2 films with different
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nanorod lengths as the electrodes.
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nanorod lengths have been measured as shown in Fig. 9. It can be seen
that the dye adsorption shows a very clear increase as the nanorod
length is increased from 1100 nm to 3790 nm. However, the dye
adsorption does not increase obviously as the nanorod length is
increased from 3790 nm to 6060 nm. It can be seen from the Fig. 1
that these TiO2 nanorods are packed very closely, the voids among the
nanorods are very small, and the dye molecules can only get into the
voids by the phenomenon of capillary siphon. The maximum depth
which the dye molecules can reach under these experimental condi-
tions may be limited to the certain value and the further increase of
the nanorod length may have no contribution on the dye adsorption.
This results in a saturation of the dye adsorption at 3790 nm length.
On the other hand, further increasing the nanorod length will also
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Fig. 9. The optical transmittance spectra of TiO2 films with different nanorod lengths after
dye-adsorption. The nanorod lengths are 1100 nm, 1850 nm, 3790 nm, 4770 nm and
6060 nm for (a), (b), (c), (d) and (e) respectively.
increase the electron diffusion path length andwill result in the increase
of the possibility of the recombination of the electrons. It will decrease
the photocurrent density as shown in Fig. 8.
4. Conclusions

TiO2 films with vertically well-aligned densely-packed nanorods
structure have been prepared on the ITO substrates by dc reactive
magnetron sputtering. TiO2 films with different nanorod lengths have
been prepared. The variation of the nanorod length does not affect the
nanorod structure. The nanorods show a preferred orientation along
the [110] direction. The increase of the nanorod length enhances this
orientation. The thermodynamic model has been used to explain the
preferred orientation. The optical band gap decreases as the nanorod
length is increased. DSSCs have been assembled using the TiO2 films
with different nanorod lengths as electrodes and themaximum conver-
sion efficiency of 4.82% has been achieved for DSSC using a TiO2 film
with 3790 nm nanorod length.
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