150 research outputs found

    Pinned modes in lossy lattices with local gain and nonlinearity

    Get PDF
    We introduce a discrete linear lossy system with an embedded "hot spot" (HS), i.e., a site carrying linear gain and complex cubic nonlinearity. The system can be used to model an array of optical or plasmonic waveguides, where selective excitation of particular cores is possible. Localized modes pinned to the HS are constructed in an implicit analytical form, and their stability is investigated numerically. Stability regions for the modes are obtained in the parameter space of the linear gain and cubic gain/loss. An essential result is that the interaction of the unsaturated cubic gain and self-defocusing nonlinearity can produce stable modes, although they may be destabilized by finite amplitude perturbations. On the other hand, the interplay of the cubic loss and self-defocusing gives rise to a bistability.Comment: Phys. Rev. E (in press

    Hydrogen Phases on the Surface of a Strongly Magnetized Neutron Star

    Get PDF
    The outermost layers of some neutron stars are likely to be dominated by hydrogen, as a result of fast gravitational settling of heavier elements. These layers directly mediate thermal radiation from the stars, and determine the characteristics of X-ray/EUV spectra. For a neutron star with surface temperature T\lo 10^6 K and magnetic field B\go 10^{12} G, various forms of hydrogen can be present in the envelope, including atom, poly-molecules, and condensed metal. We study the physical properties of different hydrogen phases on the surface of a strongly magnetized neutron star for a wide range of field strength BB and surface temperature TT. Depending on the values of BB and TT, the outer envelope can be either in a nondegenerate gaseous phase or in a degenerate metallic phase. For T\go 10^5 K and moderately strong magnetic field, B\lo 10^{13} G, the envelope is nondegenerate and the surface material gradually transforms into a degenerate Coulomb plasma as density increases. For higher field strength, B>>1013B>> 10^{13} G, there exists a first-order phase transition from the nondegenerate gaseous phase to the condensed metallic phase. The column density of saturated vapor above the metallic hydrogen decreases rapidly as the magnetic field increases or/and temperature decreases. Thus the thermal radiation can directly emerge from the degenerate metallic hydrogen surface. The characteristics of surface X-ray/EUV emission for different phases are discussed. A separate study concerning the possibility of magnetic field induced nuclear fusion of hydrogen on the neutron star surface is also presented.Comment: TeX, 35 pages including 6 postscript figures. To be published in Ap

    Hydrogen Molecules In Superstrong Magnetic Field: II. Excitation Levels

    Get PDF
    We study the energy levels of H2_2 molecules in a superstrong magnetic field (B\go 10^{12} G), typically found on the surfaces of neutron stars. The interatomic interaction potentials are calculated by a Hartree-Fock method with multi-configurations assuming electrons are in the ground Landau state. Both the aligned configurations and arbitrary orientations of the molecular axis with respect to the magnetic field axis are considered. Different types of molecular excitations are then studied: electronic excitations, aligned (along the magnetic axis) vibrational excitations, transverse vibrational excitations (a constrained rotation of the molecular axis around the magnetic field line). Similar results for the molecular ion H2+_2^+ are also obtained and compared with previous variational calculations. Both numerical results and analytical fitting formulae are given for a wide range of field strengths. In contrast to the zero-field case, it is found that the transverse vibrational excitation energies can be larger than the aligned vibration excitation, and they both can be comparable or larger than the electronic excitations. For B\go B_{crit}=4.23\times 10^{13} G, the Landau energy of proton is appreciable and there is some controversy regarding the dissociation energy of H2_2. We show that H2_2 is bound even for B>>BcritB>>B_{crit} and that neither proton has a Landau excitation in the ground molecular state.Comment: Revtex (45 pages), 3 postscript figures; Phys. Rev. A in pres

    Defining Global Benchmarks for Laparoscopic Liver Resections: An International Multicenter Study

    Get PDF

    PDRs4All IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar

    Full text link
    (Abridged) Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 μ\mum. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR, the atomic PDR, and the HII region. We use JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extract five template spectra to represent the morphology and environment of the Orion Bar PDR. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. While the spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 μ\mum, a wealth of weaker features and sub-components are present. We report trends in the widths and relative strengths of AIBs across the five template spectra. These trends yield valuable insight into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 μ\mum AIB emission from class B11.2_{11.2} in the molecular PDR to class A11.2_{11.2} in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a "weeding out" of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called 'grandPAHs'.Comment: 25 pages, 10 figures, to appear in A&

    PDRs4All II: JWST's NIR and MIR imaging view of the Orion Nebula

    Full text link
    The JWST has captured the most detailed and sharpest infrared images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). We investigate the fundamental interaction of far-ultraviolet photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of 0.1-1" (0.0002-0.002 pc or 40-400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. A complex, structured, and folded DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate

    PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar

    Full text link
    (Abridged) We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the HII region to the atomic PDR (crossing the ionisation front (IF)), and the subsequent transition to the molecular PDR (crossing the dissociation front (DF)). We use high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science Program. The NIRSpec data reveal a forest of lines including, but not limited to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. We observe numerous smaller scale structures whose typical size decreases with distance from Ori C and IR lines from CI, if solely arising from radiative recombination and cascade, reveal very high gas temperatures consistent with the hot irradiated surface of small-scale dense clumps deep inside the PDR. The H2 lines reveal multiple, prominent filaments which exhibit different characteristics. This leaves the impression of a "terraced" transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star- and planet formation as well as galaxy evolution.Comment: 52 pages, 30 figures, submitted to A&

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore