334 research outputs found
Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev
Peer reviewe
Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states
Peer reviewe
Study of double parton scattering using W+2-jet events in proton-proton collisions at √s=7 TeV
Peer reviewe
Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV
Peer reviewe
Measurements of the tt¯ charge asymmetry using the dilepton decay channel in pp collisions at √s=7 TeV
Peer reviewe
Theoretical Analysis of the Stress Induced B-Z Transition in Superhelical DNA
We present a method to calculate the propensities of regions within a DNA molecule to transition from B-form to Z-form under negative superhelical stresses. We use statistical mechanics to analyze the competition that occurs among all susceptible Z-forming regions at thermodynamic equilibrium in a superhelically stressed DNA of specified sequence. This method, which we call SIBZ, is similar to the SIDD algorithm that was previously developed to analyze superhelical duplex destabilization. A state of the system is determined by assigning to each base pair either the B- or the Z-conformation, accounting for the dinucleotide repeat unit of Z-DNA. The free energy of a state is comprised of the nucleation energy, the sequence-dependent B-Z transition energy, and the energy associated with the residual superhelicity remaining after the change of twist due to transition. Using this information, SIBZ calculates the equilibrium B-Z transition probability of each base pair in the sequence. This can be done at any physiologically reasonable level of negative superhelicity. We use SIBZ to analyze a variety of representative genomic DNA sequences. We show that the dominant Z-DNA forming regions in a sequence can compete in highly complex ways as the superhelicity level changes. Despite having no tunable parameters, the predictions of SIBZ agree precisely with experimental results, both for the onset of transition in plasmids containing introduced Z-forming sequences and for the locations of Z-forming regions in genomic sequences. We calculate the transition profiles of 5 kb regions taken from each of 12,841 mouse genes and centered on the transcription start site (TSS). We find a substantial increase in the frequency of Z-forming regions immediately upstream from the TSS. The approach developed here has the potential to illuminate the occurrence of Z-form regions in vivo, and the possible roles this transition may play in biological processes
Validation of a registry-derived risk algorithm based on treatment protocol as a proxy for disease risk in childhood acute lymphoblastic leukemia
Theoretical Analysis of Competing Conformational Transitions in Superhelical DNA
We develop a statistical mechanical model to analyze the competitive behavior of transitions to multiple alternate conformations in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. Since DNA superhelicity topologically couples together the transition behaviors of all base pairs, a unified model is required to analyze all the transitions to which the DNA sequence is susceptible. Here we present a first model of this type. Our numerical approach generalizes the strategy of previously developed algorithms, which studied superhelical transitions to a single alternate conformation. We apply our multi-state model to study the competition between strand separation and B-Z transitions in superhelical DNA. We show this competition to be highly sensitive to temperature and to the imposed level of supercoiling. Comparison of our results with experimental data shows that, when the energetics appropriate to the experimental conditions are used, the competition between these two transitions is accurately captured by our algorithm. We analyze the superhelical competition between B-Z transitions and denaturation around the c-myc oncogene, where both transitions are known to occur when this gene is transcribing. We apply our model to explore the correlation between stress-induced transitions and transcriptional activity in various organisms. In higher eukaryotes we find a strong enhancement of Z-forming regions immediately 5′ to their transcription start sites (TSS), and a depletion of strand separating sites in a broad region around the TSS. The opposite patterns occur around transcript end locations. We also show that susceptibility to each type of transition is different in eukaryotes and prokaryotes. By analyzing a set of untranscribed pseudogenes we show that the Z-susceptibility just downstream of the TSS is not preserved, suggesting it may be under selection pressure
Is alcohol consumption a risk factor for prostate cancer? A systematic review and meta-analysis.
Background: Research on a possible causal association between alcohol consumption and risk of prostate cancer is inconclusive. Recent studies on associations between alcohol consumption and other health outcomes suggest these are influenced by drinker misclassification errors and other study quality characteristics. The influence of these factors on estimates of the relationship between alcohol consumption and prostate cancer has not been previously investigated. Methods: PubMed and Web of Science searches were made for case–control and cohort studies of alcohol consumption and prostate cancer morbidity and mortality (ICD–10: C61) up to December 2014. Studies were coded for drinker misclassification errors, quality of alcohol measures, extent of control for confounding and other study characteristics. Mixed models were used to estimate relative risk (RR) of morbidity or mortality from prostate cancer due to alcohol consumption with study level controls for selection bias and confounding. Results: A total of 340 studies were identified of which 27 satisfied inclusion criteria providing 126 estimates for different alcohol exposures. Adjusted RR estimates indicated a significantly increased risk of prostate cancer among low (RR = 1.08, P 1.3, <24 g per day). This relationship is stronger in the relatively few studies free of former drinker misclassification error. Given the high prevalence of prostate cancer in the developed world, the public health implications of these findings are significant. Prostate cancer may need to be incorporated into future estimates of the burden of disease alongside other cancers (e.g. breast, oesophagus, colon, liver) and be integrated into public health strategies for reducing alcohol related disease
Spontaneous Abortion and Preterm Labor and Delivery in Nonhuman Primates: Evidence from a Captive Colony of Chimpanzees (Pan troglodytes)
Preterm birth is a leading cause of perinatal mortality, yet the evolutionary history of this obstetrical syndrome is largely unknown in nonhuman primate species.We examined the length of gestation during pregnancies that occurred in a captive chimpanzee colony by inspecting veterinary and behavioral records spanning a total of thirty years. Upon examination of these records we were able to confidently estimate gestation length for 93 of the 97 (96%) pregnancies recorded at the colony. In total, 78 singleton gestations resulted in live birth, and from these pregnancies we estimated the mean gestation length of normal chimpanzee pregnancies to be 228 days, a finding consistent with other published reports. We also calculated that the range of gestation in normal chimpanzee pregnancies is approximately forty days. Of the remaining fifteen pregnancies, only one of the offspring survived, suggesting viability for chimpanzees requires a gestation of approximately 200 days. These fifteen pregnancies constitute spontaneous abortions and preterm deliveries, for which the upper gestational age limit was defined as 2 SD from the mean length of gestation (208 days).The present study documents that preterm birth occurred within our study population of captive chimpanzees. As in humans, pregnancy loss is not uncommon in chimpanzees, In addition, our findings indicate that both humans and chimpanzees show a similar range of normal variation in gestation length, suggesting this was the case at the time of their last common ancestor (LCA). Nevertheless, our data suggest that whereas chimpanzees' normal gestation length is ∼20-30 days after reaching viability, humans' normal gestation length is approximately 50 days beyond the estimated date of viability without medical intervention. Future research using a comparative evolutionary framework should help to clarify the extent to which mechanisms at work in normal and preterm parturition are shared in these species
- …
