373 research outputs found

    Creating Multimedia Image, Motion and Audio Applications using Macromedia Flash 8.0

    Get PDF
    This paper presents a didactic scenario for the creation of a multimedia application combining image and movement, which is intended for the course quot%253BInformatics Applicationsquot%253B of the Vocational High School. This is a two-hour scenario that introduces the student to the creation of a multimedia application, mobilizing the interest for the specific activity, since with simple and fast steps it leads him to the creation of his first animation. The first hour is dedicated to the general mobilization of the student and the discovery of the basic concepts and techniques, while the second leads him to the acquaintance with the environment of quot%253BMacromedia Flash 8.0quot%253B and the creation of the first animation. The development and structure of the teaching scenario is based on the standard of level B training for IT teachers

    Multimedia License Models in a Work of Art When Handling Multimedia Material

    Get PDF
    In this research, the artist-audience relationship will be studied through the comparison of access control models. These models will be evaluated based on the type of work to be protected, which is artistic creation. A system for creating and interacting with multimedia environments that allow collaboration between artists and the audience is also proposed. This system approaches safety issues in multimedia environments that perform authenticity and watermark mechanisms. The authentication mechanism controls the processes of artists and audiences in multimedia files based on a set of actions required in real-world scenarios. The digital watermarking mechanism handles the protection of copyright and authenticity issues that occur in multimedia systems by applying a secure watermark

    Software Construction for the Estimation of the Linguistic Level and Test Difficulty

    Get PDF
    For this survey a new linguistic level evaluation and test measurement software has been created. This particular software has assisted in detection matters regarding readability and it has also allowed text readability measurement with the use of common grading systems, including readability measurement formulas. This system accepts various examination topics, which are classified according to the level of difficulty and where all kinds of tests are represented and it controls all the linguistic level and difficulty goals. The choice of topics and its inclusion is conducted with the sampling method. During this experimental application of our software, a field survey was conducted during which not only university students but also a lot of internet users were called to evaluate this programme

    Differences in protein mobility between pioneer versus follower growth cones

    Get PDF
    Navigating growth cones need to integrate, process and respond to guidance signals, requiring dynamic information transfer within and between different compartments. Studies have shown that, faced with different navigation challenges, growth cones display dynamic changes in growth kinetics and morphologies. However, it remains unknown whether these are paralleled by differences in their internal molecular dynamics. To examine whether there are protein mobility differences during guidance, we developed multiphoton fluorescence recovery after photobleaching methods to determine molecular diffusion rates in pathfinding growth cones in vivo. Actively navigating growth cones (leaders) have consistently longer recovery times than growth cones that are fasciculated and less actively navigating (followers). Pharmacological perturbations of the cytoskeleton point to actin as the primary modulator of diffusion in differently behaving growth cones. This approach provides a powerful means to quantify mobility of specific proteins in neurons in vivo and reveals that diffusion is important during axon navigation

    Pharmacokinetic modelling of the anti-malarial drug artesunate and its active metabolite dihydroartemisinin

    Get PDF
    A four compartment mechanistic mathematical model is developed for the pharmacokinetics of the commonly used anti-malarial drug artesunate and its principle metabolite dihydroartemisinin following oral administration of artesunate. The model is structurally unidentifiable unless additional constraints are imposed. Combinations of mechanistically derived constraints are considered to assess their effects on structural identifiability and on model fits. Certain combinations of the constraints give rise to locally or globally identifiable model structures. Initial validation of the model under various combinations of the constraints leading to identifiable model structures was performed against a dataset of artesunate and dihydroartemisinin concentration–time profiles of 19 malaria patients. When all the discussed constraints were imposed on the model, the resulting globally identifiable model structure was found to fit reasonably well to those patients with normal drug absorption profiles. However, there is wide variability in the fitted parameters and further investigation is warranted

    The Plasmodium falciparum Artemisinin Susceptibility-Associated AP-2 Adaptin μ Subunit is Clathrin Independent and Essential for Schizont Maturation

    Get PDF
    The efficacy of current antimalarial drugs is threatened by reduced susceptibility of Plasmodium falciparum to artemisinin, associated with mutations in pfkelch13 Another gene with variants known to modulate the response to artemisinin encodes the μ subunit of the AP-2 adaptin trafficking complex. To elucidate the cellular role of AP-2μ in P. falciparum, we performed a conditional gene knockout, which severely disrupted schizont organization and maturation, leading to mislocalization of key merozoite proteins. AP-2μ is thus essential for blood-stage replication. We generated transgenic P. falciparum parasites expressing hemagglutinin-tagged AP-2μ and examined cellular localization by fluorescence and electron microscopy. Together with mass spectrometry analysis of coimmunoprecipitating proteins, these studies identified AP-2μ-interacting partners, including other AP-2 subunits, the K10 kelch-domain protein, and PfEHD, an effector of endocytosis and lipid mobilization, but no evidence was found of interaction with clathrin, the expected coat protein for AP-2 vesicles. In reverse immunoprecipitation experiments with a clathrin nanobody, other heterotetrameric AP-complexes were shown to interact with clathrin, but AP-2 complex subunits were absent.IMPORTANCE We examine in detail the AP-2 adaptin complex from the malaria parasite Plasmodium falciparum In most studied organisms, AP-2 is involved in bringing material into the cell from outside, a process called endocytosis. Previous work shows that changes to the μ subunit of AP-2 can contribute to drug resistance. Our experiments show that AP-2 is essential for parasite development in blood but does not have any role in clathrin-mediated endocytosis. This suggests that a specialized function for AP-2 has developed in malaria parasites, and this may be important for understanding its impact on drug resistance

    In vivo Imaging and Drug Storage by Quantum-Dot-Conjugated Carbon Nanotubes

    Full text link
    A specially designed carbon nanotube (CNT) is developed for use in the early detection and treatment of cancer. The key functionalities for biomedical diagnosis and drug delivery are incorporated into the CNTs. In vivo imaging of live mice is achieved by intravenously injecting quantum dot (QD)-conjugated CNT for the first time. With near infrared emission around 752 nm, the CNT with surface-conjugated QD (CNT-QD) exhibit a strong luminescence for non-invasive optical in vivo imaging. CNT surface modification is achieved by a plasma polymerization approach that deposited ultra-thin acrylic acid or poly(lactic- co -glycolic acid) (PLGA) films (∼3 nm) onto the nanotubes. The anticancer agent paclitaxel is loaded at 112.5 ± 5.8 µg mg −1 to PLGA-coated CNT. Cytotoxicity of this novel drug delivery system is evaluated in vitro using PC-3MM2 human prostate carcinoma cells and quantified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The in vivo distribution determined by inductively coupled plasma mass spectrometry (ICP-MS) indicates CNT-QD uptake in various organs of live animals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60988/1/2489_ftp.pd

    Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM

    Get PDF
    Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Forster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research

    Anti-plasmodial polyvalent interactions in Artemisia annua L. aqueous extract – possible synergistic and resistance mechanisms

    Get PDF
    Artemisia annua hot water infusion (tea) has been used in in vitro experiments against P. falciparum malaria parasites to test potency relative to equivalent pure artemisinin. High performance liquid chromatography (HPLC) and mass spectrometric analyses were employed to determine the metabolite profile of tea including the concentrations of artemisinin (47.5±0.8 mg L-1), dihydroartemisinic acid (70.0±0.3 mg L-1), arteannuin B (1.3±0.0 mg L-1), isovitexin (105.0±7.2 mg L-1) and a range of polyphenolic acids. The tea extract, purified compounds from the extract, and the combination of artemisinin with the purified compounds were tested against chloroquine sensitive and chloroquine resistant strains of P. falciparum using the DNA-intercalative SYBR Green I assay. The results of these in vitro tests and of isobologram analyses of combination effects showed mild to strong antagonistic interactions between artemisinin and the compounds (9-epi-artemisinin and artemisitene) extracted from A. annua with significant (IC50 <1 μM) anti-plasmodial activities for the combination range evaluated. Mono-caffeoylquinic acids, tri-caffeoylquinic acid, artemisinic acid and arteannuin B showed additive interaction while rosmarinic acid showed synergistic interaction with artemisinin in the chloroquine sensitive strain at a combination ratio of 1:3 (artemisinin to purified compound). In the chloroquine resistant parasite, using the same ratio, these compounds strongly antagonised artemisinin anti-plasmodial activity with the exception of arteannuin B, which was synergistic. This result would suggest a mechanism targeting parasite resistance defenses for arteannuin B’s potentiation of artemisinin
    corecore