1,444 research outputs found

    Preliminary evaluation of waste processing in a CELSS

    Get PDF
    Physical/chemical, biological, and hybrid methods can be used in a space environment for processing wastes generated by a Closed Ecological Life Support System (CELSS). Two recycling scenarios are presented. They reflect differing emphases on and responses to the waste system formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system

    The Effect of Xenon Pulsed-Light Technology on Biofilm Adhered to Stainless Steel Surfaces

    Get PDF
    In food processing, inadequate surface sanitation procedures lead to the formation of biofilms in which bacteria attach and aggregate in a hydrated polymeric matrix of their own synthesis. Formation of these sessile communities and their inherent resistance to existing sanitation procedures and agents are at the root of the risk of bacterial infections for consumers. Due to this existing problem, an effective method for reducing biofilm formation in dairy processing equipment is necessary for dairy products processing. Ultraviolet Pulsed light Technology has shown a positive effect in eliminating microorganism populations on food products. The objective of this work is to evaluate the effect of Pulsed light Technology on a biofilm of different dairy component matrices (e.g. Water (control); whey protein isolates (WPI), lactose, and sweet whey). This evaluation will be performed using the three strains of spore forming Bacillus species most common in commercial milk powder (B. subtilis, B. coagulans, and B. licheniformis). The matrix in which the evaluation was made consisted on allowing the attachment of endospores to on to a square 2.5cm x 2.5cm ASI 304 stainless steel coupon. Four Xenon light treatment levels (no treatment, 5 bursts, 10 seconds, 20 seconds and 30 seconds) were applied to the coupon surfaces using the Xenon model RC847 machine. The attachment of Bacillus to stainless steel in water as matrix was 1000 to 3000/ sq cm as measured in our laboratory. Results showed that there was a significant difference in spore reduction depending on the matrix of the biofilm and with the intensity of the Xenon treatment. Reduction in spores ranged from 1 to 4.7 logarithmic reduction cycles depending on the material of the biofilm, the strain of spores and the intensity of treatment. We conclude that there is significant potential to use this technology in maintaining low spore counts in commercial dairy powders

    Climate change: implications for montane mammals of the Great Basin

    Get PDF
    Climate change threatens biodiversity; in particular, species with narrow distributions and specific habitat requirements. The Great Basin provides an excellent model system to evaluate the effects of climate change on species with isolated distributions and specific habitat requirements. I have evaluated the McDonald and Brown (1992) model that examined the effects of climate change on montane mammals of the Great Basin based on its underlying assumptions and model predictions. I have modeled the distributions of twelve montane mammal species found in the Great Basin and identified potential local extinctions by using maximum entropy modeling (Maxent) for two emission scenarios of changing climate for the year 2050: a minimum (b2a) and a maximum (a2a). Overall, a majority of Great Basin mammal species examined are predicted to experience reductions in distribution ranging from approximately 2-64% for a minimum emission scenario (b2a) and 39-79% for a maximum emission scenario (a2a). In particular, there was agreement between my model predictions and the MacDonald and Brown (1992) model predictions for four local extinctions for a minimum emission scenario (b2a), and five local extinctions for a maximum emission scenario (a2a). Instances in which model predictions relative to species distributions and abundances are consistent might provide a basis on which conservationists can develop generalities about biotic responses to changing environmental conditions. By understanding what environmental factors influence species occurrence, we can infer how climate change is likely to affect biodiversity and their spatial distributions, possibly allowing us to better manage and conserve populations

    Questioning the Ways of Milton: Stratford Festival’s Paradise Lost

    Get PDF

    Current practices in the spatial analysis of cancer: flies in the ointment

    Get PDF
    While many lessons have been learned from the spatial analysis of cancer, there are several caveats that apply to many, if not all such analyses. As "flies in the ointment", these can substantially detract from a spatial analysis, and if not accounted for, can lead to weakened and erroneous conclusions. This paper discusses several assumptions and limitations of spatial analysis, identifies problems of scientific inference, and concludes with potential solutions and future directions

    Quantum Chemical Studies for the Engineering of Metal Organic Materials

    Get PDF
    Metal Organic Materials (MOM) are composed of transition metal ions as connectors and organic ligands as linkers. MOMs have been found to have high porosity, catalytic, and optical properties. Here we study the gas adsorption, color change, and non-linear optical properties of MOMs. These properties can be predicted using theoretical methods, and the results may provide experimentalists with guidance for rational design and engineering of novel MOMs. The theory levels used include semi-empirical quantum mechanical calculations with the PM7 Hamiltonian and, Density Functional Theory (DFT) to predict the geometry and electronic structure of the ground state, and Time Dependent DFT (TD-DFT) to predict the excited states and the optical properties. The molecular absorption capacity of aldoxime coordinated Zn(II) based MOMs (previously measured experimentally) is predicted by using PM7 Theory level. The 3D structures were optimized with and without host molecules inside the pores. The absorption capacity of these crystals was predicted to be 8H2 or 3N2 per unit cell. When going beyond this limit, the structural integrity of the bulk material becomes fractured and microcrystals are observed both experimentally and theoretically. The linear absorption properties of Co(II) based complexes are known to change color when the coordination number is altered. In order to understand the mechanism of this color change TD-DFT methods are employed. The chromic behavior of the Co(II) based complexes studied was confirmed to be due to a chain in coordination number that resulted in lower metal to ligand distances. These distances destabilize the occupied metal d orbitals, and as a consequence of this, the metal to ligand transition energy is lowered enough to allow the crystals to absorb light at longer wavelengths. Covalent organic frameworks (COFs) present an extension of MOM principles to the main group elements. The synthesis of ordered COFs is possible by using predesigned structures andcarefully selecting the building blocks and their conditions for assembly. The crystals formed by these systems often possess non-linear optical (NLO) properties. Second Harmonic Generation (SHG) is one of the most used optical processes. Currently, there is a great demand for materials with NLO optical properties to be used for optoelectronic, imaging, sensing, among other applications. DFT calculations can predict the second order hyperpolarizability ?2 and tensor components necessary to estimate NLO. These calculations for the ?2 were done with the use of the Berry\u27s finite field approach. An efficient material with high ?2 was designed and the resulting material was predicted to be nearly fivefold higher than the urea standard. Two-photon absorption (2PA) is another NLO effect. Unlike SHG, it is not limited to acentric material and can be used development of in vivo bio-imaging agents for the brain. Pt(II) complexes with porphyrin derivatives are theoretically studied for that purpose. The mechanism of 2PA enhancement was identified. For the most efficient porphyrin, the large 2PA cross-section was found to be caused by a HOMO-LUMO+2 transition. This transition is strongly coupled to 1PA allowed Q-band HOMO-LUMO states by large transition dipoles. Alkyl carboxyl substituents delocalize the LUMO+2 orbital due to their strong ?-acceptor effect, enhancing transition dipoles and lowering the 2PA transition to the desirable wavelengths range. The mechanism 2PA cross-section enhancement of aminoxime and aldoxime ligands upon metal addition of is studied with TD-DFT methods. This mechanism of enhancement is found to be caused by the polarization of the ligand orbitals by the metal cation. After polarization an increase in ligand to ligand transition dipole moment. This enhancement of dipole moment is related to the increase in 2PA cross-sections

    Polycystic Disease of the Kidneys with special reference to its Clinical features, Radiological diagnosis and Genetic Nature

    Get PDF
    This work on polycystic disease of the kidney commenced while the author was engaged in general practice in Swellendam, in the South Western Cape from 1953-1956. Within a period of a year three patients, suffering from this disease, were seen. They were questioned about their family-relationship but they denied any such association. It was regarded as highly unlikely that three patients with a relatively rare disease, should be found in a population existing between those patients. The genealogy of each patient was worked out and when this information was bought together, it was found that they were fairly closely related. This was the first experience that the information obtained from a patient about his family may not be reliable, not even in a small, fairly closed community. As the family become known to the author the members were systematically investigated for polycystic kidney disease and an attempt was made to determine how many individuals were affected and i how many generations

    Development of a 39.5 GHz Karp traveling wave tube for use in space

    Get PDF
    A millimeter-wave TWT was developed using a dispersive, high-impedance forward wave interaction structure based on a ladder, with non-space-harmonic interaction, for a tube with high gain per inch and high efficiency. The 'Tunneladder' interaction structure combines ladder properties modified to accommodate Pierce gun beam optics on a radially magnetized PM focusing structure. The development involved the fabrication of chemically milled, shaped ladders diffusion brazed to each ridge of a double ridged waveguide. Cold-test data are presented, representing the omega-Beta and impedance characteristics of the modified ladder circuit These results were used in small and large-signal computer programs to predict TWT gain and efficiency. A laboratory model tube was designed and fabricated, including all major subassemblies

    Local clustering in breast, lung and colorectal cancer in Long Island, New York

    Get PDF
    BACKGROUND: Analyses of spatial disease patterns usually employ a univariate approach that uses one technique to identify disease clusters. Because different methods are sensitive to different aspects of spatial pattern, an approach employing a battery of techniques is expected to describe geographic variation in human health more fully. This two-part study employs a multi-method approach to elucidate geographic variation in cancer incidence in Long Island, New York, and to evaluate spatial association with air-borne toxics. This first paper uses the local Moran statistic to identify cancer hotspots and spatial outliers. We evaluated the geographic distributions of breast cancer in females and colorectal and lung cancer in males and females in Nassau, Queens, and Suffolk counties, New York, USA. We calculated standardized morbidity ratios (SMR values) from New York State Department of Health (NYSDOH) data. RESULTS: We identified significant local clusters of high and low SMR and significant spatial outliers for each cancer-gender combination. We then compared our results with the study conducted by NYSDOH using Kulldorff's spatial scan statistic. We identified patterns on a smaller spatial scale with different cluster shapes than the NYSDOH analysis did, a consequence of different statistical methods and analysis scale. CONCLUSION: This is a methodological and comparative study to evaluate whether there is substantial benefit added by using a variety of techniques for geographic pattern detection at different spatial scales. We located significant spatial pattern in cancer morbidity in Nassau, Queens, and Suffolk counties. These results broadly agree with the results of other studies that used different techniques, but differ in specifics. The differences in our results and that of the NYSDOH underscore the need for an exploratory, integrative, and multi-scalar approach to assessing geographic patterns of disease, as different methods identify different patterns. We recommend that future studies of geographic patterns use a concordance of evidence from a multiscalar integrative geographic approach to assure that 1) different aspects of spatial pattern are fully identified and 2) the results from the suite of analyses are logically consistent
    • …
    corecore