40 research outputs found

    The MeerKAT telescope as a pulsar facility: System verification and early science results from MeerTime

    Get PDF
    We describe system verification tests and early science results from the pulsar processor (PTUSE) developed for the newly commissioned 64-dish SARAO MeerKAT radio telescope in South Africa. MeerKAT is a high-gain ( ) low-system temperature ( ) radio array that currently operates at 580–1 670 MHz and can produce tied-array beams suitable for pulsar observations. This paper presents results from the MeerTime Large Survey Project and commissioning tests with PTUSE. Highlights include observations of the double pulsar , pulse profiles from 34 millisecond pulsars (MSPs) from a single 2.5-h observation of the Globular cluster Terzan 5, the rotation measure of Ter5O, a 420-sigma giant pulse from the Large Magellanic Cloud pulsar PSR , and nulling identified in the slow pulsar PSR J0633–2015. One of the key design specifications for MeerKAT was absolute timing errors of less than 5 ns using their novel precise time system. Our timing of two bright MSPs confirm that MeerKAT delivers exceptional timing. PSR exhibits a jitter limit of whilst timing of PSR over almost 11 months yields an rms residual of 66 ns with only 4 min integrations. Our results confirm that the MeerKAT is an exceptional pulsar telescope. The array can be split into four separate sub-arrays to time over 1 000 pulsars per day and the future deployment of S-band (1 750–3 500 MHz) receivers will further enhance its capabilities

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Super resolution for common probes and common microscopes

    No full text

    Scheduling resources in multi-user, heterogeneous, computing environments with SmartNet

    Get PDF
    It is increasingly common for computer users to have access to several computers on a network, and hence tobe able to execute many of their tasks on any of several computers. The choice of which computers execute which tasks is commonly determined by users based on a knowledge of computer speeds for each task and the current load on each computer. A number of task scheduling systems have been developed that balance the load of the computers on the network, but such systems tend to minimize the idle time of the computers rather than minimize the idle time of the users. This paper focusesonthebene ts that can be achieved when the scheduling system considers both the computer availabilities and the performance of each task on each computer. The SmartNet resource scheduling system is described and compared to two di erent resource allocation strategies: load balancing and user directed assignment. Results are presented where theoperation of hundreds of di erent networks of computers running thousands of di erent mixes of tasks are simulated in a batch environment. These results indicate that, for the computer environment
    corecore