17 research outputs found

    Joint environmental and social benefits from diversified agriculture

    Get PDF
    Agricultural simplification continues to expand at the expense of more diverse forms of agriculture. This simplification, for example, in the form of intensively managed monocultures, poses a risk to keeping the world within safe and just Earth system boundaries. Here, we estimated how agricultural diversification simultaneously affects social and environmental outcomes. Drawing from 24 studies in 11 countries across 2655 farms, we show how five diversification strategies focusing on livestock, crops, soils, noncrop plantings, and water conservation benefit social (e.g., human well-being, yields, and food security) and environmental (e.g., biodiversity, ecosystem services, and reduced environmental externalities) outcomes. We found that applying multiple diversification strategies creates more positive outcomes than individual management strategies alone. To realize these benefits, well-designed policies are needed to incentivize the adoption of multiple diversification strategies in unison

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Integrated virtual and cadaveric dissection laboratories enhance first year medical students’ anatomy experience: a pilot study

    No full text
    Background: Radiology integration into medical anatomy courses is well established, but there is a paucity of literature on integrating virtual dissection into cadaveric dissection laboratories. Virtual dissection is the digital dissection of medical images on touchscreen anatomy visualization tables. The purpose of this pilot study was to investigate the feasibility of integrating virtual dissection into a first-year medical cadaver-based anatomy course and to assess students’ overall attitude towards this new technology. Methods: All students in first-year medicine at a single medical school participated in this study (n = 292). Six virtual dissection laboratories, which focused on normal anatomy, were developed and integrated into a cadaver-based anatomy course. The virtual dissection table (VDT) was also integrated into the final anatomy spot exam. Following the course, students completed a short evidence-informed survey which was developed using a theoretical framework for curriculum evaluation. Numerical data were tabulated, and qualitative content analysis was performed on students’ unstructured comments. Results: The survey response rate was 69.2% (n = 202/292). Most (78.7%) students reported that virtual dissection enhanced their understanding of the cadaveric anatomy and the clinical applications of anatomy. Most (73.8%) students also felt that the VDT was an effective use of the laboratory time. Thirteen narrative comments were collected, most of which (61.5%) identified strengths of the curriculum. Conclusions: In this pilot study, students perceived that their learning was enhanced when virtual dissection was combined with a cadaver-based anatomy laboratory. This study demonstrates that there is potential for virtual dissection to augment cadaveric dissection in medical education.Medicine, Faculty ofOther UBCCellular and Physiological Sciences, Department ofMedicine, Department ofRadiology, Department ofReviewedFacult

    Is there a superior simulator for human anatomy education?: How virtual dissection can overcome the anatomic and pedagogic limitations of cadaveric dissection

    Get PDF
    Educators must select the best tools to teach anatomy to future physicians and traditionally, cadavers have always been considered the "gold standard" simulator for living anatomy. However, new advances in technology and radiology have created new teaching tools, such as virtual dissection, which provide students with new learning opportunities. Virtual dissection is a novel way of studying human anatomy through patient computed tomography (CT) scans. Through touchscreen technology, students can work together in groups to "virtually dissect" the CT scans to better understand complex anatomic relationships. This article presents the anatomic and pedagogic limitations of cadaveric dissection and explains what virtual dissection is and how this new technology may be used to overcome these limitations
    corecore