961 research outputs found
Anthropocenic culturecide: an epitaph
No description supplie
Recommended from our members
Quality program plan
This report describes a quality program plan for the Mound laboratory. Areas include variation engineering, technical manual process control systems, process performance data, product index system, promotional marketing program, quality engineering staff, ultimate use education, and management reporting
Quantifying the 2.5D imaging performance of digital holographic systems
Digital holographic systems are a class of two step, opto-numerical, three-dimensional imaging techniques. The role of the digital camera in limiting the resolution and field of view of the reconstructed image, and the interaction of these limits with a general optical system is poorly understood. The linear canonical transform describes any optical system consisting of lenses and/or free space in a unified manner. Expressions derived using it are parametrised in terms of the parameters of the optical system, as well as those of the digital camera: aperture size, pixel size and pixel pitch. We develop rules of thumb for selecting an optical system to minimise mean squared error for given input and digital camera parameters. In the limit, our results constitute a point spread function analysis. The results presented in this paper will allow digital holography practitioners to select an optical system to maximise the quality of their reconstructed image using a priori knowledge of the camera and object
A Practical Guide to Digital Holography and Generalized Sampling
The theorems of Nyquist, Shannon and Whittaker have long held true for sampling optical signals. They showed
that a signal (with finite bandwidth) should be sampled at a rate at least as fast as twice the maximum spatial
frequency of the signal. They proceeded to show how the continuous signal could be reconstructed perfectly
from its well sampled counterpart by convolving a Sinc function with the sampled signal. Recent years have
seen the emergence of a new generalized sampling theorem of which Nyquist Shannon is a special case. This
new theorem suggests that it is possible to sample and reconstruct certain signals at rates much slower than
those predicted by Nyquist-Shannon. One application in which this new theorem is of considerable interest is
Fresnel Holography. A number of papers have recently suggested that the sampling rate for the digital recording
of Fresnel holograms can be relaxed considerably. This may allow the positioning of the object closer to the
camera allowing for a greater numerical aperture and thus an improved range of 3D perspective. In this paper
we: (i) Review generalized sampling for Fresnel propagated signals, (ii) Investigate the effect of the twin image,
always present in recording, on the generalized sampling theorem and (iii) Discuss the effect of finite pixel size
for the first time
Mediating effect of pubertal stages on the family environment and neurodevelopment: An open-data replication and multiverse analysis of an ABCD Study®
Contains fulltext :
285495.pdf (Publisher’s version ) (Open Access)Increasing evidence demonstrates that environmental factors meaningfully impact the development of the brain (Hyde et al., 2020; McEwen and Akil, 2020). Recent work from the Adolescent Brain Cognitive Development (ABCD) Study® suggests that puberty may indirectly account for some association between the family environment and brain structure and function (Thijssen et al., 2020). However, a limited number of large studies have evaluated what, how, and why environmental factors impact neurodevelopment. When these topics are investigated, there is typically inconsistent operationalization of variables between studies which may be measuring different aspects of the environment and thus different associations in the analytic models. Multiverse analyses (Steegen et al., 2016) are an efficacious technique for investigating the effect of different operationalizations of the same construct on underlying interpretations. While one of the assets of Thijssen et al. (2020) was its large sample from the ABCD data, the authors used an early release that contained 38% of the full ABCD sample. Then, the analyses used several 'researcher degrees of freedom' (Gelman and Loken, 2014) to operationalize key independent, mediating and dependent variables, including but not limited to, the use of a latent factor of preadolescents' environment comprised of different subfactors, such as parental monitoring and child-reported family conflict. While latent factors can improve reliability of constructs, the nuances of each subfactor and measure that comprise the environment may be lost, making the latent factors difficult to interpret in the context of individual differences. This study extends the work of Thijssen et al. (2020) by evaluating the extent to which the analytic choices in their study affected their conclusions. In Aim 1, using the same variables and models, we replicate findings from the original study using the full sample in Release 3.0. Then, in Aim 2, using a multiverse analysis we extend findings by considering nine alternative operationalizations of family environment, three of puberty, and five of brain measures (total of 135 models) to evaluate the impact on conclusions from Aim 1. In these results, 90% of the directions of effects and 60% of the p-values (e.g. p > .05 and p < .05) across effects were comparable between the two studies. However, raters agreed that only 60% of the effects had replicated. Across the multiverse analyses, there was a degree of variability in beta estimates across the environmental variables, and lack of consensus between parent reported and child reported pubertal development for the indirect effects. This study demonstrates the challenge in defining which effects replicate, the nuance across environmental variables in the ABCD data, and the lack of consensus across parent and child reported puberty scales in youth.16 p
Heritage, affect and emotion : politics, practices and infrastructures.
Heritage and its economies are driven by affective politics and consolidated through emotions such as pride, awe, joy and pain. In the humanities and social sciences, there is a widespread acknowledgement of the limits not only of language and subjectivity, but also of visuality and representation. Social scientists, particularly within cultural geography and cultural studies, have recently attempted to define and understand that which is more-than-representational, through the development of theories of affect, assemblage, post-humanism and actor network theory, to name a few. While there have been some recent attempts to draw these lines of thinking more forcefully into the field of heritage studies, this book focuses for the first time on relating heritage with the politics of affect. The volume argues that our engagements with heritage are almost entirely figured through the politics of affective registers such as pain, loss, joy, nostalgia, pleasure, belonging or anger. It brings together a number of contributions that collectively - and with critical acuity - question how researchers working in the field of heritage might begin to discover and describe affective experiences, especially those that are shaped and expressed in moments and spaces that can be, at times, intensely personal, intimately shared and ultimately social. It explores current theoretical advances that enable heritage to be affected, released from conventional understandings of both ’heritage-as-objects’ and ’objects-as-representations’ by opening it up to a range of new meanings, emergent and formed in moments of encounter. Whilst representational understandings of heritage are by no means made redundant through this agenda, they are destabilized and can thus be judged anew in light of these developments. Each chapter offers a novel and provocative contribution, provided by an interdisciplinary team of researchers who are thinking theoretically about affect through landscapes, practices of commemoration, visitor experience, site interpretation and other heritage work
Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur-oxidizing enzyme system
The soxB gene encodes the SoxB component of the periplasmic thiosulfate-oxidizing Sox enzyme complex, which has been proposed to be widespread among the various phylogenetic groups of sulfur-oxidizing bacteria (SOB) that convert thiosulfate to sulfate with and without the formation of sulfur globules as intermediate. Indeed, the comprehensive genetic and genomic analyses presented in the present study identified the soxB gene in 121 phylogenetically and physiologically divergent SOB, including several species for which thiosulfate utilization has not been reported yet. In first support of the previously postulated general involvement of components of the Sox enzyme complex in the thiosulfate oxidation process of sulfur-storing SOB, the soxB gene was detected in all investigated photo- and chemotrophic species that form sulfur globules during thiosulfate oxidation (Chromatiaceae, Chlorobiaceae, Ectothiorhodospiraceae, Thiothrix, Beggiatoa, Thiobacillus, invertebrate symbionts and free-living relatives). The SoxB phylogeny reflected the major 16S rRNA gene-based phylogenetic lineages of the investigated SOB, although topological discrepancies indicated several events of lateral soxB gene transfer among the SOB, e.g. its independent acquisition by the anaerobic anoxygenic phototrophic lineages from different chemotrophic donor lineages. A putative scenario for the proteobacterial origin and evolution of the Sox enzyme system in SOB is presented considering the phylogenetic, genomic (sox gene cluster composition) and geochemical data
Near-field optical power transmission of dipole nano-antennas
Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna.
To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nanoantennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nanoantenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light
- …