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A B S T R A C T   

Increasing evidence demonstrates that environmental factors meaningfully impact the development of the brain 
(Hyde et al., 2020; McEwen and Akil, 2020). Recent work from the Adolescent Brain Cognitive Development 
(ABCD) Study® suggests that puberty may indirectly account for some association between the family envi
ronment and brain structure and function (Thijssen et al., 2020). However, a limited number of large studies 
have evaluated what, how, and why environmental factors impact neurodevelopment. When these topics are 
investigated, there is typically inconsistent operationalization of variables between studies which may be 
measuring different aspects of the environment and thus different associations in the analytic models. Multiverse 
analyses (Steegen et al., 2016) are an efficacious technique for investigating the effect of different operation
alizations of the same construct on underlying interpretations. While one of the assets of Thijssen et al. (2020) 
was its large sample from the ABCD data, the authors used an early release that contained 38% of the full ABCD 
sample. Then, the analyses used several ‘researcher degrees of freedom’ (Gelman and Loken, 2014) to oper
ationalize key independent, mediating and dependent variables, including but not limited to, the use of a latent 
factor of preadolescents’ environment comprised of different subfactors, such as parental monitoring and 
child-reported family conflict. While latent factors can improve reliability of constructs, the nuances of each 
subfactor and measure that comprise the environment may be lost, making the latent factors difficult to interpret 
in the context of individual differences. This study extends the work of Thijssen et al. (2020) by evaluating the 
extent to which the analytic choices in their study affected their conclusions. In Aim 1, using the same variables 
and models, we replicate findings from the original study using the full sample in Release 3.0. Then, in Aim 2, 
using a multiverse analysis we extend findings by considering nine alternative operationalizations of family 
environment, three of puberty, and five of brain measures (total of 135 models) to evaluate the impact on 
conclusions from Aim 1. In these results, 90% of the directions of effects and 60% of the p-values (e.g. p > .05 and 
p < .05) across effects were comparable between the two studies. However, raters agreed that only 60% of the 
effects had replicated. Across the multiverse analyses, there was a degree of variability in beta estimates across 
the environmental variables, and lack of consensus between parent reported and child reported pubertal 
development for the indirect effects. This study demonstrates the challenge in defining which effects replicate, 
the nuance across environmental variables in the ABCD data, and the lack of consensus across parent and child 
reported puberty scales in youth.   
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1. Introduction 

Over the last decade, advances in developmental neuroscience have 
increased our understanding of the effects of environmental experiences 
on cognitive and emotional development. Empirical evidence from both 
animal and human literatures (Bick and Nelson, 2016; Farah, 2017; 
Hackman et al., 2010; Hanson et al., 2013; McEwen and Akil, 2020; 
Pizzagalli, 2014) demonstrate that developmental changes in the brain 
reflect responses and adaptations to stressful environmental conditions. 
These changes have implications for psychopathology (Hyde et al., 
2020), health risk behaviors (Duffy et al., 2018) and public policies 
relating to poverty (Farah, 2018). However, the measurement of envi
ronmental stress (e.g., early life adversities or stressful family environ
ments) has contributed to debates on whether broad characterizations of 
environmental stressors by researchers meaningfully relate to individual 
differences of brain-behavior associations (Smith and Pollak, 2020). 
Understanding the convergence between broad and specific character
izations in large datasets, such as the Adolescent Brain Cognitive 
Development (ABCD) Study®, is especially important due to a large 
number of environmental, demographic and brain measures that are 
accessible (Barch et al., 2018; Casey et al., 2018; Gonzalez et al., 2021; 
Zucker et al., 2018). Combining these rich measures with methods that 
assess reasonable variations, such as multiverse analysis (Steegen et al., 
2016), may yield critical insights about the overlap between theoreti
cally valid decisions for future neurodevelopmental research of envi
ronmental experiences. 

One way to evaluate the associations between theoretically valid 
decisions of environmental experiences and study conclusions about 
neurodevelopment is by thoughtfully extending previously published 
work. Thijssen et al. (2020) provided much needed evidence of the as
sociations between environmental experiences, puberty and neuro
development in a large sample (N = 3183) of preadolescents from the 
ABCD study. The authors grounded their work in a strong theoretical 
framework of a) how stressful family environments have implications 
for neurodevelopment, and b) how stressful family environments may 
increase the pace of pubertal development, which may in turn affect 
changes in the brain. In this work, the family environment was char
acterized using a higher-order factor that is composed of subfactors and 
subscales. Common to most research studies (Gelman and Loken, 2014), 
the authors had to make important decisions in how they operational
ized this variable of the family environment, as well as the parental 
reported puberty scale and different gray matter, white matter tracts and 
functional coactivation brain measures. These decisions can be consid
ered as ‘researcher degrees of freedom’ (Simmons et al., 2011). While 
the decisions in Thijssen et al. (2020) were consistent with the theory 
that motivated the study, other studies measuring environmental ex
periences in the ABCD study (as we, Demidenko et al. (2021), and others 
(Gonzalez et al., 2020; Ip et al., 2022; Petrican et al., 2021; Taylor et al., 
2020) have done may reasonably impose different decisions that may 
contribute to different results and conclusions. Thus, given the rich 
higher-order model in Thijssen et al. (2020), we first perform a repli
cation of the original study using the full baseline data. Second, we 
evaluate their core analyses using the multiverse (Steegen et al., 2016) 
and specification curve analyses (Simonsohn et al., 2020) to investigate 
how the use of different environmental and puberty variables in the 
ABCD study data may impact interpretations and conclusions pertaining 
to the investigated brain-behavior associations. While the replication 
provides evidence of how effects replicate across research teams and 
different sets of ABCD data, the specification curve provides a reference 
for how alternative definitions of key variables that represent stressful 
experiences in the environment may impact the underlying conclusions. 

1.1. Measurements of family environmental, puberty and brain 

As discussed above and in Smith and Pollak (2020), there are com
plex and equally plausible ways to define a stressful environment. This is 

especially true given the ecological context in which development oc
curs (Bronfenbrenner and Morris, 2007; Oshri et al., 2020) and how 
environmental stressors are linked to the developing brain (Hyde et al., 
2020). Research studies may use broad constructs or individual mea
sures to numerically represent environmental experiences. While indi
vidual measures may strongly reflect single latent factors, understanding 
the associations of individual measures in a more nuanced way may be 
valuable to the meaningful interpretation and comparison of findings. 

One way to evaluate environmental experiences is to study the 
quality of a child’s family environment and its potential, associated 
stressors. Within the ABCD study design, Thijssen et al. (2020) define the 
family environment as a construct encapsulating interactions between 
family members, socioeconomic status (SES) and psychopathology in 
the home. It is based on the evolutionary theory of psychosocial accel
eration (Belsky et al., 1991), whereby children adapt their development 
based on their environment, such as caregiving, availability of resources 
and interpersonal relationships. The latent measure of the family envi
ronment used in Thijssen et al. (2020) consisted of child-report of 
parental conflict, monitoring and acceptance, parent-report of conflict 
and psychopathology variables, and several demographic question
naires from the ABCD study. This conceptualization of stressful experi
ences in the environment, which combines a variety of factors into a 
single measure of family environment, is comparable to the cumulative 
risk approach (Evans et al., 2013; Smith and Pollak, 2020). 

Given that children often encounter a constellation of risk factors and 
that the cumulative effect of multiple risks is greater than any singular 
risk combined (Evans et al., 2013; Gach et al., 2018), examining the 
aggregated impact of multiple risk factors has been a prominent way to 
study the impact of stressful family environments. Contemporary 
frameworks have also examined the impact of unique environmental 
stressors as distinct types of adverse events using a dimensional 
approach (McLaughlin et al., 2014, 2017, 2021). It is unclear, however, 
whether different operational approaches (e.g., lumping or splitting) 
when measuring the family environment may be associated with 
divergent outcomes (Smith and Pollak, 2020) or lose information about 
individuals and critical caregiving factors (Pollak and Smith, 2021). 

The quality of parenting and resources within an environment are 
reported as important contributors to socioemotional development, but 
their associations with neurodevelopment remain unclear. Experiences 
such as parental separation (Corrás et al., 2017), parent-child and family 
conflicts (Repetti et al., 2002), or growing up in impoverished envi
ronments (Conger et al., 2002; McLoyd, 1998) have been reported to 
increase risks for child behavioral problems (Flouri et al., 2014) and 
poor functioning in academic settings (Hair et al., 2015). It is proposed 
that such adversities may accelerate maturation of subcortical structures 
that are implicated in emotion regulation (Callaghan and Tottenham, 
2016), such as the amygdala (Whittle et al., 2014) and anterior cingulate 
cortex (ACC; Thijssen et al., 2020; Zuo et al., 2019), in addition to their 
corresponding functional coactivations (Gee et al., 2013; Park et al., 
2018; Thijssen et al., 2017). However, there is nuanced variation among 
the associations between the family environment and neural structures 
and function. Many studies, for instance, report that brain volume and 
surface areas are smaller in children of low SES (Farah, 2017) or those 
who were exposed to childhood trauma (De Bellis et al., 1999), but 
larger in other cases (Tooley et al., 2021). This poses the question of how 
broad (e.g., latent factors) and individual measures (e.g., parental con
flicts or income) relate to neurodevelopment. In fact, work by Rakesh 
et al. (2021a,b) using the ABCD study data reported that different con
structs of stressful experiences (i.e., neighborhood disadvantage, 
parental education and high household income-to-needs ratios) were 
uniquely related to specific functional networks. 

The subtleties of the family environment may be especially impor
tant as they relate to the effects of environmental adversities and pu
bertal onset. For example, adverse family environments have been 
reported to cause earlier pubertal onset (Belsky, 2019; Ellis and Garber, 
2000; Kim and Smith, 1998; Moffitt et al., 1992); however, there are also 
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reports that the effects of early stress on puberty may depend on specific 
experiences (Colich et al., 2020) and child sensitivity to environmental 
contexts (Ellis et al., 2011). These inconsistencies may in part be 
attributed to challenges in measuring pubertal development. For 
instance, parents and children may have differing accounts of child 
pubertal development. This lack of concordance may be more pro
nounced at younger ages, including critical prepubertal stages (Clawson 
et al., 2020; Kapetanovic and Boson, 2020; Yi-Frazier et al., 2016). For 
boys, physical changes may be less readily apparent to parents (Dorn 
et al., 2003). These factors suggest that how pubertal development is 
measured may introduce bias that could produce differing conclusions 
about the relations between puberty and environmental adversities. 

To date, investigations using the ABCD study data have drawn upon 
different measures of the family environment and puberty when 
studying neurodevelopment. For instance, studies focused on neuro
development have used latent factors of the family environment (Thijs
sen et al., 2020, 2022), bio-psycho-social ecologies (Gonzalez et al., 
2020), neighborhood and family income/stress (Demidenko et al., 2021; 
Ip et al., 2022; Sripada et al., 2021; Taylor et al., 2020) and material 
deprivation/threat/social support (DeJoseph et al., 2022; Petrican et al., 
2021), or individual scales of family-to-needs ratios (Gonzalez et al., 
2020; Rakesh et al., 2021), poverty levels (Ellwood-Lowe et al., 2021), 
parental education (Rakesh et al., 2021a,b), area deprivation indices 
(Rakesh et al., 2021; Rakesh et al., 2021) and parental acceptance 
(Rakesh et al., 2021). As for measures of pubertal development (see 
reviews regarding measures and correspondence of pubertal scales: 
Cheng et al. (2021) and Herting et al. (2021)), published works using 
ABCD data have used parent-reported pubertal development (Demi
denko et al., 2021; McNeilly et al., 2021; Thijssen et al., 2020, 2022) or 
youth/parent reported averages of pubertal development (Petrican 
et al., 2021). Given variations in the analytic choices regarding measures 
of the family environment and puberty, the overall goal of the current 
analysis is to use a multiverse approach to understand the nuanced as
sociations among stressful family environmental experiences, puberty 
and neurodevelopment when using broad measures (i.e., latent factors) 
that are comprised of multiple scales as well as specific measures (i.e., 
individual scales) that are based on individual scales. 

1.2. Evaluating robustness using multiverse analyses 

Multiverse analyses (Steegen et al., 2016) have emerged in psy
chology in response to the replication crisis in the field (Loken and 
Gelman, 2017; Open Science Collaboration, 2015). In its simplest form, 
multiverse analyses capture all possible results of analyses stemming 
from reasonable variations of data preparation and variable selections, 
such as decisions by researchers to use a median split or latent factor to 
operationalize a variable, as in the variety of measures of environmental 
adversities. These decisions may at times be considered as ambiguous 
and thus categorized as a researcher’s degrees of freedom in the analytic 
process (Simmons et al., 2011). For instance, decisions may comprise 
broad or specific operationalizations of constructs intended to capture 
different forms of environmental experiences (Smith and Pollak, 2020). 
As the observed data for individuals across different variables varies and 
statistical models leverage this variability to make statistical inferences, 
the multiverse allows the comparison of “many worlds” of data (Steegen 
et al., 2016, p. 703) and draws inferences from the many statistical results. 

The multiverse technique can be used to explore and aggregate how 
robust an effect is across different measures and model permutations. 
One approach used to aggregate the results from the multiverse analysis 
is to use a specification curve (Simonsohn et al., 2020). The specification 
curve analysis runs all specified model permutations, reporting the 
range of effects for each model in one panel and the associated variables 
included in the model for the respective effect in a second panel. This 
technique provides a visual representation of the variation of positive, 
negative and null effects and their significance across the range of var
iables that may have reasonably been specified in a model. 

Multiverse analyses have been used in behavioral and neuro
developmental work. For instance, Orben et al. (2019) evaluated the 
association between social media use and life satisfaction, reporting 
inconsistencies that were dependent on how sex was modeled and which 
analytical method used. Bloom et al. (2021) used a multiverse analysis 
to evaluate the robustness of age-related changes in functional activa
tion and brain connectivity in their longitudinal cohort of 4–22 
year-olds. Across their model permutations, they reported age-related 
associations in functional activation in the amygdala were relatively 
robust to model permutations but findings for amygdala-medial pre
frontal cortex connectivity were inconsistent across model permuta
tions. Finally, Rijnhart et al. (2021) used a multiverse analysis on a 
mediation model to examine indirect, direct and total effects of models 
evaluating whether fat mass mediated the association between weight 
change and bone mineral density. Across their models, they observed 
effects that were consistent and in agreement with existing work, which 
suggested that association between weight change and bone mineral 
density was robust overall, across alternative analytic decisions in their 
sample. The literature demonstrates the feasibility of multiverse ana
lyses to provide nuanced information regarding how key variables and 
statistical decisions relate to the consistency of evidence for prevailing 
hypotheses. 

1.3. Current study 

The current study consists of two aims which attempt to replicate 
(Aim 1) and extend (Aim 2) the findings from primary analyses in 
Thijssen et al. (2020) that used the Release 1.1 data from the ABCD 
study. The focus in this study is on associations between the (a) envi
ronmental variables (i.e., parent and youth reported family conflict 
scale, youth reported parental monitoring and parental acceptance, and 
parent reported income/education) and (b) structural (T1; Bilateral 
Amygdala Subcortical, Bilateral Anterior Cingulate Cortex (ACC) 
Cortical Thickness, Bilateral ACC Cortical Area) and resting state coac
tivations (e.g., bilateral Cingulo-Opercular Network and Amygdala 
functional connectivity), and how (c) reported puberty mediates these 
associations. Given that the focus here is on the primary analysis in 
Thijssen et al. (2020) and the limited variability on the pubertal scale in 
baseline release of the ABCD study 9–10 years old sample, we do not 
evaluate the stratified differences of sex. 

In Aim 1, we conduct a hybrid-replication of the primary mediation 
models from Thijssen et al. (2020; which used the partial release, 37%, 
of the baseline ABCD data) in the full release of the baseline data. Given 
the definition of reproducibility and replicability in the literature (Art
ner et al., 2021), we refer to this as hybrid replication because the 
baseline ABCD data used here comprises part of the original dataset and 
63% new data. Based on replication studies (Open Science Collabora
tion, 2015), we evaluate whether the results replicate by considering 
three metrics: 1) consistency in direction and significance of the indirect 
and direct effects in these analyses and the original published work, 2) 
evaluate whether the estimates from this original study overlapped with 
the 95% confidence interval for the replication study and 3) a subjective 
rating of reproducibility of effects by randomly selecting a subset of 
coauthors to assess whether estimates did or did not replicate. 

In Aim 2, we extend Aim 1 findings by using a multiverse analysis 
that varies along the independent variable (the overarching family 
environment factor) and the mediator (parent reported, youth reported 
and youth/parent reported average puberty). Within the constraints of 
the ABCD study design, we consider the theoretically plausible sub
factors and individual scales that may be used in future research to 
evaluate the family environment, as well as the parent and youth re
ported variable of pubertal development. We report the results of the 
multiverse analysis of the mediation model using specification curves 
(Rijnhart et al., 2021; Simonsohn et al., 2020) for the direct, indirect and 
total effects. 

Some reasonably assert that, like the definitions in an analysis 
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pipeline, defining the multiverse is often arbitrary (Del Giacco et al., 
2021). Hence, we use alternative derivations of the variables that are 
modeled in the Family Environment factor in Thijssen et al. (2020), such 
as sub-factors (i.e., Parent, Child and Demographic factors) and indi
vidual scales (e.g., Parental monitoring and Parental Incom
e/Education). These derivations have been and may be used in future 
ABCD studies using theoretical frameworks to obtain numerical repre
sentations of stressful experiences in the environment, and to identify 
differences between the use of parent and youth reported pubertal 
development. These results will have important implications for repli
cation and variability of effects using different measures. 

2. Methods 

2.1. Participants 

The ABCD Consortium study includes longitudinal data that are 
released based on a predefined schedule (https://abcdstudy.org/scien 
tists/data-sharing/). The ABCD sample is composed of 11,878 9- and 
10-year-old preadolescents enrolled across 21 ABCD research sites 
(Garavan et al., 2018; Volkow et al., 2018). The analyses in Thijssen 
et al. (2020) utilized Data Release 1.1 of the ABCD Study, which rep
resented approximately 37% of those preadolescents. For this data 
replication and extension study, data are drawn from the Data Release 
3.0. Consistent with Thijssen et al. (2020), several exclusion criteria are 
applied. Participants were excluded if the structural gray matter data 
was moderately/severely impacted by (1) motion, (2) intensity in
homogeneity, (3) white matter underestimation, (4) pial over
estimation, or if the resting state fMRI (5) average framewise 
displacement value was greater than 0.55mm and (6) a fieldmap was not 
collected within two scans. Then, also consistent with the original work, 
participants were excluded if (1) the guardian completing the survey at 
the visit was not a biological parent (i.e., biological mother or father), 
(2) participant is a twin/triplet and (3) if siblings were enrolled from a 
family, one sibling was randomly excluded. This scheme resulted in a 
sample of 6658 participants of which N = 2482 (37%) were represented 
in the first partial release. The distinction between the first and subse
quent releases is based on the August 30, 2017, data cut-off provided by 
the ABCD Data Analytics and Resource Center. Code used in these an
alyses is publicly available (Demidenko, 2022). 

2.2. Measures 

Complete details of the measures used are available in the Supple
mental Materials and in Thijssen et al. (2020). Abbreviated information 
is presented below. For more details about the variables and code 
covered in this section, please refer to the associated files with this OSF 
preregistration on GitHub (Demidenko, 2022). 

2.3. MRI 

Consistent with the original paper, we used the tabulated summary 
statistics of MRI data provided by the ABCD consortium’s data analytic 
core through their neuroimaging processing algorithm and subject-level 
analysis plans noted in the Hagler et al. (2019). Specifically, we focus on 
the Bilateral Amygdala Subcortical Volume, Bilateral ACC Cortical 
Thickness, Bilateral ACC Cortical Area and resting state coactivations of 
bilateral Cingulo-Opercular Network and Amygdala functional connec
tivity. Bilateral values, such as the Bilateral Amygdala Volume, reflect 
the mean of the left and right structural estimates. The ACC Fractional 
Anisotropy was excluded in the present analyses, as there were reported 
preprocessing differences for diffusion weighted data following release 
1.1. Part of the results in Thijssen et al. (2020) were later updated due to 
corrections that were announced by the ABCD consortium regarding the 
preprocessing of rsfMRI data (Thijssen et al., 2021). 

Data were acquired from T1-weighted anatomical scans and resting- 

state fMRI (see Casey et al. (2018) for more details). Prior to scanning, 
participants were invited to experience mock scanners to familiarize 
themselves with MRI procedures. Head motion was monitored while 
participants were in the MRI scanners and corrected for as part of the 
analyses. MRI preprocessing and analyses information, which were 
conducted by the ABCD consortium’s data analytic core is in part 
summarized in the original publication (Thijssen et al., 2020, 2021) and 
provided in Hagler et al. (2019). 

2.4. Environmental measures 

2.4.1. Child items/factor 
An abbreviated measure of maternal acceptance, the Child Report of 

Parent Behavior Inventory (5-item CRPBI; Schaefer, 1965), is used. Items 
are averaged such that higher scores indicate higher perceptions of parental 
acceptance (i.e., higher scores are interpreted as a more positive family 
environment). The youth reported Family Environment Scale (9-item 
FES-Y; Moos and Moos, 1976) is a youth self-report measure that as
sesses family social environment as perceived by the family member. 
Items are averaged and reverse coded such that higher scores indicate 
lower perceptions of family conflict (i.e., higher scores interpreted as a 
more positive family environment). The Parental Monitoring Survey 
(5-item PMON; Chilcoat and Anthony, 1996) is a youth self-report 
measure that assesses parental monitoring/supervision. Items are aver
aged such that higher scores indicate higher parental monitoring (i.e., higher 
scores interpreted as a more positive family environment). 

For the current study, the Child Factor is composed of the individual 
items of the CRPBI, FES-Y and PMON scales. To account for the reli
ability of each scale, a confirmatory factor analysis was submitted to 
lavaan::cfa() (Rosseel et al., 2021) in R version 4.0.3 (R Core Team, 
2020). Each measure’s items load onto their respective scales (i.e., 
CRPBI, FES-Y and PMON) and the subfactors were then loaded onto a 
main Child Factor. Given the ordinal scales, each item was labeled as 
‘categorical’ and all factor variances were constrained to 1. While there 
are extensive discussions regarding appropriate fit criteria for Confir
matory Factor Analysis (CFA) models (McNeish and Wolf, 2021), here 
we use thresholds that are comparable to those in the original paper 
(Thijssen et al., 2020, p. 689). For the Child Factor, in the current sample 
the fit criteria are reasonable: χ2(149) = 1092.6, p < .001; Comparative 
Fit Index (CFI) = 0.97; Tucker-Lewis Index (TLI) = 0.97; Root Mean 
Square Error of Approximate (RMSEA) = 0.03; Standardized Root Mean 
Square Residual (SRMR) = 0.05. The loadings of each subscale on the 
Child Factor are 0.82 for CRPBI, − 0.54 for FES-Y and 0.77 for PMON, 
such that higher scores on the Child Factor reflected positive aspects of 
the environment. Factor scores were extracted and used in subsequent 
analyses. 

2.4.2. Parent items/factor 
Like the FES-Y, the parent-reported Family Environment Scale (9-item 

FES-P) is a measure that assesses family social environment as perceived 
by the family member. Items are averaged and reverse coded such that 
higher scores indicate higher perceptions of family conflict (i.e., higher 
scores interpreted as a more positive family environment). One item 
measuring conflict from the Kiddie Schedule for Affective Disorders and 
Schizophrenia (KSADS; Kaufman et al., 1997) was used to assess 
parental-child conflict. High scores on this item indicate a more negative 
relationship between the child and parent (i.e., higher scores interpreted as 
a more negative family environment). 

For the current study, the Parent Factor is composed of the individual 
items for FES-P and KSADS scales. To maintain the item/factor structure 
from Thijssen et al. (2020), two items from the FES-P (Q7 & Q9) were 
excluded. Like the Child Factor, a CFA was submitted to lavaan::cfa() in 
R with each measure’s items loading onto the Parent Factor. Given the 
ordinal scales, each item was labeled as ‘categorical’. Using the fit 
criteria from the original paper, in the current sample the fit criteria for 
this factor are reasonable, χ2(20) = 947.6, p < .001, CFI = 0.93, TLI =
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0.90, RMSEA = 0.08, SRMR = 0.10. For ease of interpretation, we 
inverted our Parent Factor scores to ensure its consistency with the 
Family Environment scores (described below). Thus, higher scores on 
the reverse-coded Parent Factor indicate more positive aspects of the 
environment. Factor scores were extracted and used in subsequent 
analyses. 

2.4.3. Demographic items/factor 
Youth self-reported their age in months, their sex at birth using op

tions “Male”, “Female”, “Other”, and race/ethnicity, (1) “White, (2) 
“Black”, (3) “Hispanic”, (4) “Asian”, (5) “Other”. These variables were 
used as covariates in the mediation models, consistent with Thijssen 
et al. (2020). 

Parents self-reported on income, education, separation and preg
nancy variables. For combined household income, parents selected an 
income category for the past 12 months ranging from (1) “less than 
$5000” to (10) “$200,000 and greater”. Parents reported on their or 
their partner’s highest level of education by selecting an education 
category that ranged from (0) “Never Attended” to (21) “Doctoral De
gree”. Parents reported on their marital status, such as (1) “Married” or 
(6) “Living with partner” and whether their pregnancy with the child 
was a planned pregnancy (Yes/No). 

Parental psychopathology was assessed using the comprehensive 
measure from the Achenbach System of Empirically Based Assessment 
Adult Self-Report (ASRS; Achenbach and Rescorla, 2003). Here, the 
t-scored total problems score is used (range 25–100), whereby higher 
values indicate higher problems. 

For the current study, the Demographic Factor is composed of in
come, education, separation, pregnancy and the parental psychopa
thology variables. Like the Parent and Child Factors, confirmatory factor 
analysis was submitted to lavaan::cfa() in R with each measure’s items 
loading onto the Demographic Factor. Given the ordinal scales, each 
item except for parental psychopathology was labeled as ‘categorical’. 
Using the fit criteria from the original paper, in the current sample the fit 
criteria for this factor are reasonable, χ2(5) = 195.4, p < .001, CFI =
0.98, TLI = 0.96, RMSEA = 0.08, SRMR = 0.05. For ease of interpre
tation, we inverted our Demographic Factor scores to ensure it is 
consistent with the Family Environment scores (described next). Higher 
scores on the Demographic Factor indicate more advantaged aspects of 
the environment. Factor scores were extracted and used in subsequent 
analyses. 

2.4.4. Family environment factor 
Like the original paper, the Family Environment higher order factor 

is a confirmatory factor that is composed of the Child, Parent and De
mographic variables. The confirmatory factor analysis was submitted to 
lavaan::cfa() in R. In a single model, the youth reported items repre
senting the family environment (i.e., CRPBI, FES-Y, PMON) loaded onto 
a Child subfactor, the Parent reported items representing the family 
environment (i.e., FES-P and KSADS) loaded onto the Parent subfactor 
and the demographic items representing the family environment (i.e., 
Income, Education, Planned Pregnancy, Parental Separation and Parent 
ASRS) loaded onto the Demographic subfactor. All subfactors were then 
loaded onto the overarching Family Environment Factor. All factor 
variances were constrained to 1. In the model, excluding parental in
come and parental psychopathology, all categorical items were entered 
as categorical under the ‘ordered’ option in lavaan:cfa. Using the fit 
criteria from the original paper, the fit criteria for this factor are 
reasonable for this sample, χ2(458) = 7079.2, p < .001, CFI = 0.89, TLI 
= 0.89, RMSEA = 0.05, SRMR = 0.07. The standardized loadings are 
Child (Loading: − 0.56; 95% CI: − 0.59 to − 0.54), Parent (Loading: 0.55; 
95% CI: 0.53 to 0.58) and Demographic (Loading: 0.47; 95% CI: 0.45 to 
0.49). For ease of interpretation, we inverted our family factor scores to 
ensure it is consistent with the previous study. Thus, higher scores on the 
Family Environment Factor indicate a less stressful family environment. 
Factor scores were extracted and used in subsequent analyses. 

2.5. Pubertal stage 

The Pubertal Development Scale (PDS; Petersen et al., 1988) assesses 
the child’s pubertal stage. The PDS is a non-invasive measure that as
sesses current pubertal status in females and males. Higher scores 
indicate further progression in puberty. Here we use the (1) youth 
self-reported average scores to assess youth reported pubertal develop
ment, (2) parent reported average scores that assess parent reported 
pubertal development and (3) as used in prior ABCD studies (Petrican 
et al., 2021) the average of parent and youth reported average pubertal 
development scores. 

2.6. Analytic plan 

Descriptive statistics were calculated for key demographic variables 
for this study. Bivariate Pearson correlations (r) are provided for the 
relations between variables of interest, the subfactors and overarching 
factors. Distribution plots for each variable are also provided to repre
sent the normality of these variables. Descriptive statistics and the 
Pearson correlation tables among the demographic and factor variables 
were provided as part of the pre-registration as they are not central to 
the conceptual replication (Aim 1) and multiverse analyses (Aim 2); see 
conceptual Fig. 1. 

The core analyses in our pre-registration (https://doi.org/10.17605/ 
OSF.IO/GXK96) were to test the indirect effect of reported pubertal 
development on the association between the environment and the 
structure and function of the brain (Thijssen et al., 2020). The mediation 
model is composed of several parts: path-c, path-a, path-b, path-c’ and 
the indirect effect, as illustrated in traditional mediation analyses (Baron 
and Kenny, 1986; Mackinnon and Dwyer, 1993), shown in Fig. 1 and 
expanded on in the supplemental materials. 

In Aim 1, we replicate the core Mplus mediation results from the 
Thijssen et al. (2020) study using structural equation modeling using 
lavaan (Rosseel, 2012) in R version 4.0.3 (R Core Team, 2020). We 
re-analyze mediation analyses using the IV (Family Environment Fac
tor), the mediator (parent self-reported pubertal development), and the 
five brain DVs ((1) Bilateral Amygdala Subcortical (Amygdala volume), 
(2) Bilateral ACC Cortical Thickness (ACC CT), (3) Bilateral ACC Cortical 
Area (ACC CA), (4) Cingulo-Opercular Network and Left Amygdala 
functional connectivity (Left Amyg-CON) and (5) Cingulo-Opercular 
Network and Right Amygdala (Right Amyg-CON) functional 

Fig. 1. Conceptual model for proposed analyses in Aim 1 and Aim 2. A: 
Mediation model from Thijssen et al. (2020) that is used in replication. B: 
Proposed models for the mediation analyses, varying across nine independent 
variables (IV) and three mediators. 
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connectivity, see conceptual Fig. 1A). The replication of estimates, 
specifically indirect and direct coefficients, from the original study and 
replication in Aim 1 are evaluated using three metrics. First, similar to 
reports in Open Science Collaboration (2015), for each of the five 
mediation models in Aim 1, the consistency in a) direction and b) sig
nificance of the indirect and direct effects in these analyses and the 
original published study. Second, acknowledging the sample and mea
sure variability that contribute to our confidence in effects, for each of 
the five mediation models, we plot the overlap between the a-path, 
b-path, indirect, direct and total effects from the original study with 
their 95% confidence interval (CI) for this replication study. Then, 
similar to reports of replication in Open Science Collaboration (2015), 
we also do the inverse, whereby we overlap the estimate from the 
replication with the original studies 95% CI. For the original work, we 
estimate the upper bound 95% CI by adding 1.96*Standard Error to β 
and the lower bound 95% CI by subtracting 1.96*Standard Error from β 
that are published in Figure 1 and Table 4-6 in the original paper 
(Thijssen et al., 2020). In cases where we could not calculate this from 
the original paper, such as for indirect and total effects, we received 
standard error terms from the original study’s authors. Third, out of the 
list of eight authors on the pre-registered project (https://doi.org/10 
.17605/OSF.IO/GXK96) that were not part of the original study 
(Thijssen et al., 2020), MID, DPK, KII, SL and HB were selected to report 
whether the effect (1) did or did not (0) replicate. Agreement was 
operationalized as when 80% (4 out of 5) of the authors determined that 
an effect did or did not replicate. The authors inspected the sample size, 
beta estimates, 95% CI and p-values from both the original and repli
cation study to derive their conclusion. Based on these ratings, we 
calculate and report the fraction of authors, e.g. n/5, that concluded 
whether each effect was replicated from the original to the current 
study. Thus, in the replication we evaluate whether the inference and 
conclusions from the model are consistent between the studies. 

In Aim 2, we extend the mediation results in Aim 1 by evaluating the 
effects across the theoretically plausible multiverse of the independent 
family environment variables and mediating pubertal variables (See 
Table 1 and Fig. 1B). Specifically, we consider the theoretically plausible 
independent variables: Child Factor, Parent Factor, Demographic Factor 
and frequently used scales measuring parental acceptance, parental 
monitoring and family conflict, as reported by the youth and parents 

and, given their large correlation (r = 0.62), the z-scored average of 
parent reported income and education. Given the nuance in the pubertal 
scale and dissimilarity discussed above, we consider the theoretically 
plausible mediator of youth self-reported, parent reported and the 
average of youth/parental reported pubertal development stage. 

Similar to the multiverse mediation analyses in Rijnhart et al. (2021), 
in Aim 2, the mediation results across our 135 mediation model per
mutations are reported using specification curves (Simonsohn et al., 
2020). A specification curve is reported independently for the direct, 
indirect and total effect. This is used to represent the range of estimated 
effects across the variable permutations. This is reported in two panels. 
Figure Panel A represents the ordered estimated beta coefficients and 
their associated significance (null hypothesis is 0) colored based on no 
significance (gray), negative (red) or positive (blue) significance. 
Figure Panel B represents the analytic decisions (i.e., IV, DV and medi
ator) that are in the model that produced these ordered estimates. To 
draw inferences across the specification curve, we report several results. 
First, like Rijnhart et al. (2021), we report the frequency and direction of 
the effect across the multiverse compared to the effects in Aim 1. Second, 
we consider the proportion of effects from Aim 1 that overlap with the 
95% CI in Aim 2 for each brain outcome. Finally, we consider the pro
portion of values that are significant in the direction that is consistent 
with Aim 1 results. The latter is solely for reporting the percentage of 
effects that may go unnoticed given the traditional null-hypothesis 
testing framework and the p < .05 threshold that is often used in psy
chology research. We set the alpha cut-off (p < .05) for the mediation 
analyses. This is consistent with recent perspectives on multiple com
parison corrections in exploratory work (Rubin, 2021; Thompson et al., 
2020). To provide context for deviations across our models, we consider 
within/between category variation. For instance, we may observe 
greater similarity in effects across the overarching Family Environment 
and Parent, Demographics and Child subfactors than the Family Envi
ronment factor and individual scales, as the factors may capture more 
signal and less noise (Hodson, 2021). We report this in a two-panel 
figure to easily digest the difference in direction and magnitude of ef
fects across factor derived and individual measure scores. 

3. Results 

Characteristics of the sample analyzed in the current study are pre
sented in Table 2. The final sample was composed of 6658 participants 
(50.6% male). The average age of the participants included in the 
sample was 119 months, or approximately 10 years old. Parent-reported 
and child self-reported PDS mean scores were 1.78 and 2.09, respec
tively. This assessment of pubertal development indicates that partici
pants were, on average, in the “early puberty” stage of pubertal 
development. Notably, 3.9% of the parent reported and 19.7% of the 
child reported PDS scores were missing. 

Fig. 2 provides the correlations between the environment, puberty 
and brain measures used in this study (Specific Pearson r estimates are 
available in Supplemental Table S1). As reported in Fig. 2, the de
mographic factor correlated with parent, child and family environment 
factors at r = 0.13, r = 0.13 and r = 0.64, respectively. These correla
tions differed slightly from those in the original study (Thijssen et al., 
2020), which reported correlation metrics of r = 0.29, r = 0.31 and r =
0.67, respectively. The correlation among the other factors is compa
rable to those reported in Thijssen et al. (2020). Specifically, correla
tions from the replication analyses between the family environment 
factor and the child factor (r = 0.59) and between the family environ
ment factor and the parent factor (r = 0.76) are comparable to the 
original analyses (r = 0.70 and r = 0.80 for the same analyses, respec
tively). However, the correlation between parent and child factors (r =
0.13) in the replication analyses were different in magnitude than the 
original analysis (r = 0.38). 

Then, with the exception of a couple of variables, most of the self- 
reported variables were weakly correlated (r < |0.10|) with the five 

Table 1 
Aim 2 variables for multiverse analyses: IV*M*DV = 135 total mediation 
models.  

Environment (IV) Puberty Scale 
(M) 

Brain (DV) Covariates 
(constant) 

(1) Family 
Environment Factor 

(1) Parent 
Reported PDS 

(1) Bilat. 
Amygdala SV 

Age, Race/ 
Ethnicity, Sex 

(2) Parent Factor (2) Youth 
Reported PDS 

(2) Bilat. ACC 
CT  

(3) Child Factor (3) Averaged 
Parent/Youth 
PDS 

(3) Bilat. ACC 
CA  

(4) Demographic 
Factor  

(4) Left Amyg- 
CON rsfMRI  

(5) FES Youth  (5) Right Amyg- 
CON rsfMRI  

(6) FES Parent    
(7) Parental 

Monitoring    
(8) Parental 

Acceptance    
(9) z-scored Parental 

Income/Education    

PDS = Pubertal Development Scale; FES = Family Environment Scale (reverse 
scored); Bilat = Bilateral Average; ACC = Anterior Cingulate Cortex (rostral/ 
caudal average); Amyg-CON = Amygdala Cingulo-Opercular Network Connec
tivity; SV = Subcortical Volume; CT = Cortical Thickness; CA = Cortical Area; IV 
= Independent Variable; M = Mediator; DV = Dependent Variable. 
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brain measures. Age was negatively correlated with ACC CT (r = − 0.17) 
and positively correlated with ACC CA (r = 0.14). Sex was positively 
correlated with Amygdala volume (r = 0.14). The Left Amyg-CON 
correlated positively with the Family Environment and Demographic 
Factor scores (r = 0.11 & r = 0.16) and the averaged income/education 
(r = 0.14). A similar positive correlation was found for the Right Amyg- 
CON with the Family Environment (r = 0.09), Demographic Factor (r =
0.12) and the averaged income/education (r = 0.12). 

3.1. Aim 1: Replication of Thijssen et al. (2020) 

The first aim of this study is to evaluate the extent to which the ef
fects reported in Thijssen et al. (2020) using intial ABCD data release 
replicated in our data using a subsample from the full baseline data. Our 
preregistration focused on the primary interest of the original work: the 
mediating role (indirect effect) of parental reported puberty on the as
sociation (direct effect) between the family environment and the brain. 
The two panel Fig. 3 presents the effects from Thijssen et al. (2020; 

Table 2 
Sample descriptives across different releases and for final sample.   

Total 
Release 

Release Pre 
Aug 8, 2018 

Release Post 
Aug 8, 2018 

Final 
Sample 

N =
11,878 

N = 4743 N = 7135 N = 6658 

Mean (SD) 

Age (Months) 119 
(7.50) 

120 (7.33) 118 (7.53) 119 
(7.46) 

Parent Report - PDS 1.76 
(0.868) 

1.72 (0.850) 1.78 (0.880) 1.78 
(0.876) 

Missing, N (%) 472 
(4.0%) 

136 (2.9%) 336 (4.7%) 261 
(3.9%) 

Youth Report - PDS 2.08 
(0.834) 

2.08 (0.833) 2.08 (0.834) 2.09 
(0.828) 

Missing, N (%) 2336 
(19.7%) 

415 (8.7%) 1921 
(26.9%) 

1312 
(19.7%)  

N (%) 
Sex 

Female 5682 
(47.8%) 

2262 
(47.7%) 

3420 
(47.9%) 

3291 
(49.4%) 

Male 6196 
(52.2%) 

2481 
(52.3%) 

3715 
(52.1%) 

3367 
(50.6%) 

Family Income 
Less than $5000 417 

(3.5%) 
104 (2.2%) 313 (4.4%) 253 

(3.8%) 
$5000 through 
$11,999 

421 
(3.5%) 

133 (2.8%) 288 (4.0%) 235 
(3.5%) 

$12,000 through 
$15,999 

274 
(2.3%) 

79 (1.7%) 195 (2.7%) 155 
(2.3%) 

$16,000 through 
$24,999 

524 
(4.4%) 

186 (3.9%) 338 (4.7%) 296 
(4.4%) 

$25,000 through 
$34,999 

654 
(5.5%) 

237 (5.0%) 417 (5.8%) 399 
(6.0%) 

$35,000 through 
$49,999 

934 
(7.9%) 

363 (7.7%) 571 (8.0%) 519 
(7.8%) 

$50,000 through 
$74,999 

1499 
(12.6%) 

634 (13.4%) 865 (12.1%) 820 
(12.3%) 

$75,000 through 
$99,999 

1572 
(13.2%) 

692 (14.6%) 880 (12.3%) 906 
(13.6%) 

$100,000 through 
$199,999 

3315 
(27.9%) 

1382 
(29.1%) 

1933 
(27.1%) 

1800 
(27.0%) 

$200,000 and 
greater 

1250 
(10.5%) 

556 (11.7%) 694 (9.7%) 683 
(10.3%) 

Refuse to answer 512 
(4.3%) 

192 (4.0%) 320 (4.5%) 289 
(4.3%) 

Don’t Know 504 
(4.2%) 

185 (3.9%) 319 (4.5%) 301 
(4.5%) 

Education 
Never attended/ 
Kindergarten only 

0 (0%) 0 (0%) 0 (0%) 0 (0%) 

1st grade 2 (0.0%) 0 (0%) 2 (0.0%) 1 (0.0%) 
2nd grade 1 (0.0%) 1 (0.0%) 0 (0%) 1 (0.0%) 
3rd grade 10 (0.1%) 3 (0.1%) 7 (0.1%) 7 (0.1%) 
4th grade 8 (0.1%) 1 (0.0%) 7 (0.1%) 5 (0.1%) 
5th grade 3 (0.0%) 0 (0%) 3 (0.0%) 2 (0.0%) 
6th grade 62 (0.5%) 21 (0.4%) 41 (0.6%) 41 (0.6%) 
7th grade 21 (0.2%) 7 (0.1%) 14 (0.2%) 13 (0.2%) 
8th grade 61 (0.5%) 22 (0.5%) 39 (0.5%) 36 (0.5%) 
9th grade 136 

(1.1%) 
39 (0.8%) 97 (1.4%) 82 (1.2%) 

10th grade 107 
(0.9%) 

38 (0.8%) 69 (1.0%) 62 (0.9%) 

11th grade 193 
(1.6%) 

56 (1.2%) 137 (1.9%) 118 
(1.8%) 

12th grade 182 
(1.5%) 

55 (1.2%) 127 (1.8%) 106 
(1.6%) 

High school 
graduate 

992 
(8.4%) 

339 (7.1%) 653 (9.2%) 555 
(8.3%) 

GED or equivalent 268 
(2.3%) 

77 (1.6%) 191 (2.7%) 156 
(2.3%) 

Some college 1950 
(16.4%) 

753 (15.9%) 1197 
(16.8%) 

1087 
(16.3%) 

Associate: 
Occupation 

874 
(7.4%) 

335 (7.1%) 539 (7.6%) 466 
(7.0%) 

258 (5.4%) 406 (5.7%)  

Table 2 (continued )  

Total 
Release 

Release Pre 
Aug 8, 2018 

Release Post 
Aug 8, 2018 

Final 
Sample 

N =
11,878 

N = 4743 N = 7135 N = 6658 

Mean (SD) 

Associates: 
Academic 

664 
(5.6%) 

370 
(5.6%) 

Bachelor’s degree 3333 
(28.1%) 

1452 
(30.6%) 

1881 
(26.4%) 

1849 
(27.8%) 

Master’s degree 2280 
(19.2%) 

984 (20.7%) 1296 
(18.2%) 

1259 
(18.9%) 

Professional School 
(MD) 

334 
(2.8%) 

147 (3.1%) 187 (2.6%) 205 
(3.1%) 

Doctoral degree 380 
(3.2%) 

149 (3.1%) 231 (3.2%) 228 
(3.4%) 

Refuse to Answer 17 (0.1%) 6 (0.1%) 11 (0.2%) 9 (0.1%) 
Race 

White 6182 
(52.0%) 

2777 
(58.5%) 

3405 
(47.7%) 

3427 
(51.5%) 

Black 1784 
(15.0%) 

468 (9.9%) 1316 
(18.4%) 

897 
(13.5%) 

Hispanic 2411 
(20.3%) 

934 (19.7%) 1477 
(20.7%) 

1536 
(23.1%) 

Asian 252 
(2.1%) 

106 (2.2%) 146 (2.0%) 148 
(2.2%) 

Other 1247 
(10.5%) 

458 (9.7%) 789 (11.1%) 650 
(9.8%) 

Parents’ Marital Status 
Married 7991 

(67.3%) 
3349 
(70.6%) 

4642 
(65.1%) 

4506 
(67.7%) 

Widowed 97 (0.8%) 49 (1.0%) 48 (0.7%) 40 (0.6%) 
Divorced 1082 

(9.1%) 
470 (9.9%) 612 (8.6%) 567 

(8.5%) 
Separated 464 

(3.9%) 
152 (3.2%) 312 (4.4%) 262 

(3.9%) 
Never Married 1460 

(12.3%) 
449 (9.5%) 1011 

(14.2%) 
808 
(12.1%) 

Living with Partner 688 
(5.8%) 

253 (5.3%) 435 (6.1%) 411 
(6.2%) 

Refused to Answer 94 (0.8%) 21 (0.4%) 73 (1.0%) 62 (0.9%) 
Before/After Aug 30, 2017 Cut-off # 

Release 1 4743 
(39.9%) 

– – 2482 
(37.3%) 

Release 2 7135 
(60.1%) 

– – 4176 
(62.7%) 

# Release 1.1 was released in 2018 and contained part (participant’s data 
collected before August 30, 2017) of the cohort recruited for the ABCD study. 
Release 2.0 was released in 2019 and contained the full baseline cohort (par
ticipant’s data collected after August 30, 2017) for the ABCD study. Release 3.0 
was released in 2020 containing initial longitudinal data. The ABCD Consortium 
posts information about recent and new releases at the following webpage: 
https://abcdstudy.org/scientists/data-sharing/. 
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indicated by a circle) and this replication study (indicated by a X). As a 
reminder, in the original paper, the direct effect was significant for the 
association between the family environment and the ACC CT and Right 
Amyg-CON, and the pubertal stage significantly mediated the associa
tion between the family environment and the ACC CT. We focused on 
three metrics for evaluating replication of indirect and direct effects: (1) 
the direction and p-values of the effects, (2) the overlap in confidence 
intervals (CIs) and beta estimates between the replication and original 
analyses and (3) whether most (80%) of raters holistically considered 
the effect to have replicated. 

First, across the five brain regions measured in both the original and 
replication study, 90% of the estimates (9/10) were in the same direc
tion and 60% of p-values (6/10) were in the same significance category 

(i.e., p > .05 versus p < .05) across indirect and direct estimates. Direct 
effects of family environment on the brain (Right Amyg-CON, p < .001) 
and indirect effects of pubertal stage linking family environment and the 
brain (ACC CA p < .05, Left Amyg-CON, p < .001 & Right Amyg-CON p 
< .001) that were significant in the replication study were not significant 
in the original study. 

Second, we considered the overlap between 95% confidence in
tervals and the reported beta estimates in the original and replication 
analyses. Here, we considered two options: (a) the extent that the 
replicated beta effects overlap with the 95% CIs reported in Thijssen 
et al. (2020) and (b) the extent the beta estimates from Thijssen et al. 
(2020) overlap with the 95% CI in the replicated models. In the case of 
the direct and indirect effects, while we found that the beta estimates 

Fig. 2. Correlations (r’s) between several key vari
ables and factors proposed in Aim 2. Blue-shaded 
boxes represent positive correlations; red-shaded 
boxes represent negative correlations; the darkness 
of the hue represents the magnitude of the correla
tions. 
FamEnv = Family Environment; Demo = De
mographic; Fact = Factor; Par = Parent; Yth = Youth; 
FES = Family Environment Scale (i.e. Conflict; 
reverse scored); PMON = Parental Monitoring; 
Accept = Child Report of Parent Behavior Inventory 
(i.e., Acceptance); Avg IncEdu = Average Parent Re
ported Income & Education; PDS = Pubertal Devel
opment Scale; Amyg = Amygdala; ACC = Anterior 
Cingulate Cortex; CT = Cortical Thickness; CA =
Cortical Area; AmygCON = Amygdala Cingulo- 
Opercular Network connectivity; L = Left; R =

Right. For specific r point estimates, see Supplemen
tary Table S1. *p < .05, **p < .01, ***p < .001. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   

Fig. 3. Reported standardized β estimates for Direct 
and Indirect effects from original study by Thijssen 
et al. (2020) and Replication study. A: Original Study 
with associated 95% CI = ○; Replication Study = ✕. 
B: Original Study = ○; Replication Study with asso
ciated 95% CI = ✕. 
ACC = Anterior Cingulate Cortex; CA = Cortical Area; 
CT = Cortical Thickness; Vol = Volume; L/R Amyg
CON = Left/Right Amygdala Cingulo-Opercular 
Network connectivity.   
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from the replication models overlapped 100% of the time with the 95% 
CIs provided in Thijssen et al. (2020) (Fig. 3A), only 50% of the beta 
estimates from Thijssen et al. (2020) overlapped with the 95% CI found 
in the replicated models (Fig. 3B). Information across all paths are re
ported in Supplemental Figs. S3–S4. 

Third, five authors rated the extent to which the effects replicated 
between the two studies. The raters reported using two evaluative 
techniques, they either (a) interpreted whether the effects and magni
tude between the original and replication study are the same or (b) in 
addition to the direction and magnitude, raters considered whether the 
difference in p-values (e.g., p > .05 versus p < .05) may impact the 
takeaway by reader(s) and publisher(s). Across the ten direct and indi
rect effects for the five key brain areas, raters determined that 60% of the 
effects replicated, 10% did not replicate and agreement could not be 
reached on 30% of the effects. Specifically, in terms of indirect effects, 
the raters deemed that effects replicated for Amygdala volume and ACC 
CT (100% agreement) and for ACC CA (80% agreement). Less consensus 
was achieved for Left and Right Amygdala-CON (i.e., 60% agreed that 
the effects replicated). This is partly due to disagreement among the 
raters regarding how to compare significance between studies that are 
differentially powered. For direct effects, the raters agreed that the ef
fects of ACC CT, ACC CA and Left AmygCON replicated (100% agree
ment), and Amygdala volume replicated (80%% agreement, whereas the 
effects of Right Amyg-CON did not replicate (i.e., 80% agreement). The 
completed rates of agreement for each effect are reported in the Sup
plemental Fig. S2. 

3.2. Aim 2: Multiverse analyses 

The second aim of this study was to evaluate how analytical de
cisions within a study may influence the results and interpretation of the 
findings. First, with respect to the independent variable (i.e., different 
measures of the environment), we considered the similarity and differ
ences across the theoretically plausible subfactors and individual scales. 
Second, with respect to the mediator (i.e., parent reported, youth re
ported and youth/parent reported average puberty), we considered the 
similarity and differences across operationalizations of pubertal 
development. 

The multiverse analysis for the 135 indirect effects is reported in the 
specification curve below (Fig. 3). In addition, the specification curve for 
the direct and total effects is reported as supplemental materials (see 
Figs. S6 and S7). The specification curve consists of two panels, the es
timates (panel A) and variables (panel B). Each estimate in panel A has 
an associated X (predictor), Y (outcome) and M (mediator) ticked in 
panel B, which represents the variables used for that mediation model. 
For example, if we take the 50th estimate reported in panel A of Fig. 4, 
we observe the estimate is non-significant (gray) with a wide 95% CI 
that crosses zero. In panel B, we can observe that this same 50th estimate 
is the mediating (M) role of youth reported puberty on the association 
between the predictor (X), Youth FES, and the outcome (Y), ACC CT. By 
cross-referencing the variables for the 50th estimate with the reported 
estimates from all of the multiverse models (see the supplemental file1), 
we know that the indirect effect for this estimate is β = − 0.000013 (95% 
CI range, 0.003 to − 0.003, p = .99) and can therefore conclude that 
selecting this combination of independent variable, mediators and 
outcome would lead to a non-significant result. 

Extending the reported effects in Aim 1, it is therefore plausible to 
use this approach to investigate the robustness of results when esti
mating the indirect effect using other predictors and mediators. First, for 
the Left AmygCON, the three largest significant positive indirect effects 
in Fig. 4 are the mediating effects of parental reported puberty on the 
association between the predictor’s average income/education (β =
0.013), demographic factor (β = 0.012) and the family environment 

factor (β = 0.012) and the outcome Left AmygCON. In a similar model, 
but for the Right AmygCON and ACC CT, the largest three effects are 
average income/education (β = 0.012), demographic factor (β = 0.011) 
and the family environment factor (β = 0.012) for the Right AmygCON, 
and the demographic factor (β = 0.010), average income/education (β 
= 0.009) and the family environment factor (β = 0.008) for the ACC CT. 
Then, the three largest significant positive direct effects for the parent 
reported pubertal models (see Supplemental Fig. S6) are the direct effect 
of demographic factor on Left AmygCON (β = 0.134), average income/ 
education on Left AmygCON (β = 0.122) and demographic factor on 
Right AmygCON (β = 0.108). Finally, across the 135 permutations of the 
mediation model, 39% of indirect, 42% of direct and 45% of the total 
effects were significantly different than zero (p < .05). 

3.3. Predictors: Similarity within factors and within scales 

The multiverse analyses also permitted the comparison of the direct 
and indirect effects between models which include each of the nine 
different environment independent variables, as shown in panel B of 
Fig. 1. These nine independent variables can be divided into two cate
gories: factor derived scores (i.e., family environment, parent, de
mographic and child) and measure derived scores (i.e., FES youth, FES 
parent, parental monitoring and parental acceptance and average in
come/education). The estimate for the family environment factor is 
included in the factor (A) and measure (B) panels in Fig. 5 to provide a 
reference for the degree to which estimates overlap across the levels of 
measurement. Panel A of Fig. 5 shows the beta estimates of the direct 
and indirect effects on the five brain outcomes for each of the factor 
derived independent variables while Panel B of Fig. 5 shows the same 
information for each of the measure derived independent variables. 

Relative to each other, there was comparatively greater variability in 
magnitude among beta estimates for the indirect effects, particularly the 
AmygCON. Regarding the factor derived scores in particular, there were 
significant results for all four predictors for the ACC CT brain region and 
both left and right Amyg-CON. Although the magnitude and direction of 
estimates including these predictors across these brain outcomes are 
similar, standard errors were lower for parent and child factors 
compared to family environment and demographics. 

3.4. Mediator: Similarity across measures of pubertal development stage 
(PDS) 

A primary motivation for the multiverse analysis was to consider 
how variations among PDS assessment may impact the underlying re
sults. For the direct effects, across the 135 multiverse analyses, we found 
comparable rates of significance across methods of assessing PDS. Spe
cifically, 42% (19/45) of the parent reported PDS models, 44% (20/45) 
of the youth reported PDS models and 42% (19/45) of the parent & 
youth PDS average models had a significant direct effect. In comparison, 
for the indirect effects, 76% (34/45) of the parent reported PDS models, 
0% (0/45) of the youth reported PDS models and 38% (17/45) of the 
parent & youth PDS average models had a significant indirect effect. 
Youth reported PDS models had a lower number of significant a-paths 
(IV → M) than parent and youth/parent averages, 78% (35/45) versus 
100%. Notably, youth reported PDS models had a substantially lower 
number of significant b-paths (M → DV) than parent and youth/parent 
averages, 4% (2/45) versus 78% (35/45) for parent reported PDS and 
40% (18/45) for average parent/youth reported PDS. This might suggest 
that in the context of analytic flexibility, the construct with which pu
bertal development is defined significantly impacts the underlying as
sociations and interpretations of the path model. 

4. Discussion 

The current study builds on the analyses of the ABCD data in Thijssen 
et al. (2020) by conducting a replication and multiverse extension of the 1 Supplemental File: MultiverseResults.csv. 
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original study. In the primary mediation analyses, Thijssen et al. (2020) 
reported a significant direct effect between the overarching family 
environment factor and ACC CT and Right Amyg-CON, and a significant 
indicted effect, whereby parent reported pubertal development medi
ated the association between the overarching family environment factor 
and ACC CT. Our study provides a direct replication and extension of an 
existing study using the publicly available ABCD data. We replicated a 
subset of the direct effects for the association between the family envi
ronment and five brain regions and the indirect effect of parent reported 
pubertal development from Thijssen et al. (2020), which suggests some 
behavior-brain associations may change between the releases of the 
ABCD data. In the multiverse analyses, we found that, across the four 
factor-derived scores and five individual measures, there was a higher 
degree of variability in the magnitude and direction among beta esti
mates for the direct effects than the indirect effects, which suggests there 
are nuanced differences in effects depending on how the environmental 
variable is operationalized. In the case of the indirect effects, results 
were most consistent for the family environment, demographic and 
income/education independent variables and the parent reported pu
bertal measures, which suggests a substantial amount of shared variance 
among variables representing SES. Collectively, these findings demon
strate the importance and necessity of clarifying whether effects 

replicate, whether nuanced differences in operationalizations of the 
family environment impact conclusions about neurodevelopment and 
the potential consequences of using different pubertal scales on the 
underlying results. 

We used three metrics to compare the results of the original and 
direct replication analyses which yielded somewhat different informa
tion. The three metrics we used were: 1) the consistency in direction and 
significance of effects, 2) whether the 95% confidence intervals from the 
original and replicated studies included the effects from the other study 
and 3) subjective ratings from the authors. First, while 90% of the es
timates in the current study were in the same direction, 60% of p-values 
were in the same category (e.g., p > .05, p < .05) as in the original study. 
Specifically, several direct and indirect effects that were not significant 
in the original work were significant in the replication. Statistically, this 
can, in part, be attributable to the difference in the sample size 
(Wagenmakers, 2007) and negligible correlations becoming significant 
with increased power (Cohen, 1994), as the replication sample was over 
two times larger than the original study, which yielded greater evidence 
against the null hypothesis. The significance threshold (e.g., p < .05) is 
traditionally used to evaluate whether a finding or set of findings is 
published or promoted versus ending in the file drawer (Simonsohn 
et al., 2014). This threshold indicates that an estimate is significantly 

Fig. 4. Results of the multiverse analysis expressed as 
specification curves for all of the 135 models. The 
blue, gray and red colors indicate whether that stan
dardized β estimate was a significant positive (p <
.05), non-significant (p > .05) or a significant nega
tive estimate (p < .05), respectively. Age, sex and 
race covariates constant across all models. A. Indirect 
Effect estimates from mediation models; ordered by 
size and direction for each estimate for an associated 
X (predictor), Y (outcome) and M (Mediator). B. The 
associated variables, X, Y and M (Mediator), for each 
associated effect in the mediation model. 
PMON = Parental Monitoring; Fact = Factor; Par =
Parent; Accept = Child Report of Parent Behavior 
Inventory (i.e., Acceptance); FES = Family Environ
ment Scale (i.e. conflict; reverse coded); Yth = Youth; 
FamEnv = Family Environment; Demo = De
mographic; Avg IncEdu = Average Parent Reported 
Income & Education; L/R AmygCON = Left/Right 
Amygdala Cingulo-Opercular Network connectivity; 
ACC = Anterior Cingulate Cortex; CT = Cortical 
Thickness; CA = Cortical Area; PDS = Pubertal 

Development Scale. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)   

Fig. 5. Reported standardized β estimates for direct 
and indirect effects from the multiverse analyses for 
Parental Reported Puberty models only. The Family 
Environment beta and its associated 95% CI is re
ported in both Panel A & Panel B to provide reference 
for how much effects diverge from the original model 
across different operationalizations of the indepen
dent variable. 
A: estimates for the models using factor derived scores 
as IV (■ = Family Environment; ▴ = Demographic; 
● = Parent; ⬥ = Child). B: estimates for the models 
using measure derived scores as IV (■ = Family 
Environment; ○ = FES Youth (i.e., Conflict; reverse 
coded); + = FES Parent (i.e., Conflict; reverse coded); 
✕ = Parental Monitoring; ⬦ = Child Report of Parent 
Behavior Inventory (i.e., Acceptance); * = Avg In
come/Education).ACC = Anterior Cingulate Cortex; 
CA = Cortical Area; CT = Cortical Thickness; Vol =
Volume; L/R AmygCON = Left/Right Amygdala 
Cingulo-Opercular Network Connectivity. See Sup
plemental Figs. S8–S9 for all paths.   
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different from zero but it doesn’t necessarily indicate whether two es
timates significantly differ (Gelman and Stern, 2006). Second, it is 
notable that the original study reported wider confidence intervals 
compared to our replication study. This, in part, explains why only 50% 
of the beta estimates from the original study overlapped with the 95% 
CIs in this replication study, whereas all the beta estimates from the 
replication study overlapped with the 95% CIs provided in the original 
work. This difference suggests that the model estimates for the effects 
reported in the original study had greater uncertainty around the esti
mated betas than those reported in the replication given the larger 
sample size of the replication. Third, across subjective ratings, the raters 
agreed that 60% of the effects replicated, 10% did not replicate and 30% 
could not achieve consensus among the majority of the raters. For 
example, consensus was not reached for mediating effect of parent re
ported puberty between the overarching family environment factor and 
Left and Right Amyg-CON functional connectivity. This is, in part, re
flects the two distinct ways raters judged the replication: (1) some raters 
judge an effect replicated when the effect between the original and 
replication study were in the same direction and magnitude, irrelevant 
of the people; (2) other raters judged the magnitude, direction and the 
p-values as the p-value may bias interpretation and publishing of a 
result. This highlights a critical, and still unresolved, discussion of what 
is meaningfully important when interpreting results between studies 
and conducting replication efforts (Dick et al., 2021; Romero, 2019). 

Replicability is considered to provide a metric of robustness within a 
scientific discipline through direct or conceptual replications (Romero, 
2019; Zwaan et al., 2018) and information about the generalizability of 
a theoretical framework (Irvine, 2021). The inconsistency among these 
three metrics reiterate the challenge of quantifying replication and poses 
a conceptual question: what does it truly mean to replicate a study? 
Fletcher (2021) acknowledges the inherent difficulty in “quantifying” 
replication. Despite different procedures that exist to establish whether 
replication has been successful, Zwaan and colleagues acknowledged, 
“Two researchers can look at the same replication study and come to 
completely different conclusions about whether the original effect was suc
cessfully duplicated” (2018, p. 12). Thus, defining a consistent conceptual 
definition of replication remains an ongoing challenge. For instance, 
consider a situation in which the direction and significance of an effect 
are replicated, but the magnitude of the effect differs considerably from 
the original study. Would one argue that the original study has not been 
replicated? Would policymakers act on the findings from the original 
and the replicated study in the same way? In the current replication 
study, we have determined that a portion of findings from the original 
study were replicated based on the three metrics used. However, addi
tional consideration should be given to the conceptual meaning of 
replication while interpreting the current magnitude and direction of 
the current effects. 

The changes in the magnitude of effects during a replication are 
especially important in the context of multiple comparisons. In our 
replication we compared uncorrected significance values with the un
corrected values in Thijssen et al. (2020). Recently, using the second 
release of the ABCD study data, the original team conducted a replica
tion of their study (Thijssen et al., 2020) and found some of their con
clusions changed (Thijssen et al., 2022). Specifically, they reported that 
in the new data the mediating effect of parent reported pubertal 
development on the association between family environment and ACC 
CT and Left Amyg-CON were significant. However, the effect for the ACC 
CT was no longer significant using multiple comparison correction. Yet, 
using a conservative Bonferroni correction (α/5 models), the ACC CT 
model would remain significant in our replication study. Highlighting 
how differences in sample size and multiple comparison corrections can 
alter conclusions and make conclusions about replication even more 
challenging. 

Results from the multiverse analysis in the present study also 
demonstrated the important role of variable selection in determining 
magnitude and direction of effect sizes. Here, we found that the 

association between family environment and specific neural structures 
and functional connectivity can differ by how the family environment 
was operationalized. While we found consistent findings with the orig
inal paper that parent-reported pubertal development indirectly medi
ated the association between family environment factor and ACC CT 
(Thijssen et al., 2020), we also found equally sized effects using other 
socioeconomic measures, such as a demographic factor and parent re
ported income/education. It is reasonable to speculate that these find
ings were driven by the fact that these variables are highly correlated 
and thus play a similar role in the association with brain and pubertal 
development (Conger et al., 2010; Linver et al., 2002); however, these 
findings also illustrate that differences in the effects of the environment 
on brain and development could be explained by differential approaches 
in statistical modeling, namely the use of latent variables (Mersky et al., 
2017; Smith and Pollak, 2020). While capturing shared variance among 
multiple variables using latent factors may provide a more overarching 
representation of family environments, latent factors may also conceal 
important specificity that exists in each individual component. Thus, our 
multiverse approach provides a model where both the overarching and 
individual components can be accomplished by reporting all possible 
permutations of variable selection. 

In the context of operationalizing a variable, one of the constructs in 
the adolescent literature that shows the most notable variation in 
operationalization is puberty. In particular, whether the most accurate 
and reliable judgments of it come from children themselves or from their 
parents. While the majority of the ABCD literature uses the parent re
ported PDS (Demidenko et al., 2021; McNeilly et al., 2021; Thijssen 
et al., 2020), there are also instances of the youth reported PDS (Arga
bright et al., 2022) and an average of the parent and youth reported PDS 
being used (Petrican et al., 2021). This multiverse study provided a 
unique opportunity to compare the consequences of researchers utiliz
ing each of these three operationalizations of puberty. In these analyses, 
the direct effect between the environmental predictors and the brain 
outcomes was minimally affected by how puberty was controlled; 
however, how puberty was operationalized had a substantial impact on 
the indirect effect. Whereas the indirect effects were significant in 78% 
of the models that included parent reported PDS, 0% of indirect effects 
were significant in the child reported models. Although different mea
sures of puberty produced different conclusions, we cannot infer that in 
any case we had more accurately measured the target of puberty in any 
of the operationalizations (Irvine, 2021), nor that this conclusively 
shows that parent reported puberty should be preferentially used, only 
that how we operationalize puberty might impact discussions about the 
effects of the environment on brain development. This trend could 
potentially be dependent on the age of the sample: in these analyses, the 
ABCD sample was limited to 9- and 10-year-olds, an age group that 
shows relatively little overt physical manifestations of pubertal devel
opment by this point, particularly in boys. In addition, a potential 
concern is the relatively high amount of missing data for the 
youth-reported PDS (19.7%) compared to the parent-reported PDS 
(3.9%) in the final sample, which could also feasibly be directly related 
to the participants being in the earliest stages of puberty. Pubertal 
hormone measures acquired through saliva samples were also collected 
by the ABCD study and could be used as an additional operationalization 
of puberty, but there are important concerns about the feasibility of 
using salivary samples, namely the representativeness of single hormone 
assays given our knowledge of the extent that hormones fluctuate 
(Cheng et al., 2021). As the ABCD sample ages, follow-up studies will be 
needed to make more consistent conclusions about the differences be
tween the different operationalizations of the PDS measures, including 
biological measures. 

It is well understood that measurement error and researcher degrees 
of freedom contribute to replication (Loken and Gelman, 2017) and 
generalizability issues (Flake et al., 2022), making multiverse analyses 
an effective way to meaningfully gauge the robustness of findings. There 
is increasing evidence from the neuroimaging literature that decision 
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points across an analytic pipeline may impact the conclusions when 
reproducing or replicating brain-behavior effects (Bloom et al., 2021; 
Botvinik-Nezer et al., 2020; Bowring et al., 2022; Bryce et al., 2021; Li 
et al., 2021). These issues are confounded in developmental research on 
environmental stress as a product of overlapping measures and 
competing theories (Smith and Pollak, 2020). The nature of economic 
interests (Mischel, 2008; Romero, 2019), high rate of psychologists 
self-reporting engagement in questionable research practices (John 
et al., 2012), pressing need for publishing significant (Romero, 2019; 
Zwaan et al., 2018) and novel findings (Proulx and Morey, 2021) and 
‘hindsight bias’ (Klapwijk et al., 2021; Zwaan et al., 2018) makes it 
challenging to decipher which specific researcher decisions would 
reproduce estimates in the data. 

So, what can we learn from a multiverse analysis? Given competing 
theoretical frameworks in the environmental stress literature, defining 
what is an ‘ambiguous’ decision in the analytic process is challenging. 
Nevertheless, multiverse analyses offer researchers a suitable approach 
to probe the sensitivity, or robustness, of their results. Multiverse ana
lyses are not intended to disprove an overarching model, instead, they 
offer awareness of alternative explanations that are plausible given the 
shared nomological space of the measured variables. This approach al
lows researchers the opportunity to empirically examine competing 
models that are often influenced by researchers’ degrees of freedom and 
theoretical perspectives (Smith and Pollak, 2020). For example, 
compared to an overarching variable (such as the family environment), 
in the context of pubertal development a simplified version of the in
dependent variable (such as income and education) may be compara
tively more interpretable for intervention researchers. By providing 
alternative results with a multiverse analysis, the intention is to confer 
improved communication of results to permit researchers to evaluate 
under which conditions the alternative explanations could also be true. 
When studying environmental stress, applying multiverse analyses is 
especially relevant given that measures of adversities overlap in a 
number of ways and therefore are difficult to tease apart in correlational 
work (Smith and Pollak, 2020). 

4.1. Study considerations 

This study contains several notable considerations which should be 
taken into account when interpreting the replication and multiverse 
analyses. 

First, while we use comparable metrics to prior replication studies 
(Open Science Collaboration, 2015), some researchers may disagree 
with our definitions of replicated and non-replicated effects. Fletcher 
notes the limitation of the dichotomous nature of null hypothesis sig
nificance testing (NHST), in that the ‘the facts of replication are objectively 
conventional’ (2021, p. 56). Although basing judgments concerning 
replication within a NHST framework could be considered a limitation, 
here we consider this to be a valuable metric as researchers and clini
cians may reach different conclusions based on estimates that are and 
are not significant. Given that the 95% CI and p-value are susceptible to 
similar critiques, we addressed this potential limitation by using a 
collection of values and statistics that were then critically assessed by a 
random subset of coauthors. Although Fletcher (2021) highlights that 
subjective assessments, too, may be unreliable indicators, human judg
ment is deeply embedded throughout the extant literature, from the 
processes of deciding which theory to base a hypothesis on to which 
scientific evidence provides support for results from a given analysis. 
Nevertheless, we agree that there are biasing factors in using a subjec
tive assessment of replication and a Bayesian approach, such as repli
cation Bayes factors (Ly et al., 2019), should preferably be considered 
for future replication and extension analyses, if both the original and 
replication data are easily accessible. 

Second, future studies could improve on the procedure for the sub
jective assessment of replication. While we were intentional in ensuring 
that the assessors were independent of the original study’s co-author list, 

there could potentially be greater confidence in the conclusion of the 
subjective assessment with a greater number of assessors (this study 
used a report of five co-authors). Similar to how neuroimaging studies 
source broad teams to redo analyses (Botvinik-Nezer et al., 2020), 
crowdsourcing methods may be a reasonable approach to increase the 
number of subjective assessments, provided that assessors were pro
vided with enough information and independence from the research 
teams. 

Third, some of the effects in this study and the original study 
(Thijssen et al., 2020) could potentially be considered as small in 
magnitude and pose important considerations. Notably, small effects in 
fMRI brain wide associations for developmental phenotypes (Marek 
et al., 2022) and the increasing understanding that small effects in large 
data may be commonplace (Dick et al., 2021). Hence, there is a strong 
argument for adjusting expectations regarding the magnitude of effects 
from large, well-powered datasets, such as the ABCD data (Owens et al., 
2021). This is confounded with large datasets, such as the ABCD and UK 
Biobank studies, which are adequately powered to identify significant 
correlations that are likely negligible (Cohen, 1994). Given this, the 
variability around estimates and decreased sample sizes in the partial 
release would be affected based on whether conclusions reached sig
nificance using traditional (p ≤ .05; Wagenmakers, 2007) and newer 
significance thresholds (p ≤ .005; Lakens et al., 2018). In future repli
cations, instead of setting α cutoffs for significance, researchers should 
supply bounds within which an estimate is deemed replicated which is 
irrespective of the p-value. 

Fourth, while not central to this study but critical to takeaways from 
the multiverse analyses, a key consideration for our use of pubertal 
scales is the causal nature of the variables in our meditation models 
(Rohrer et al., 2021). Generally, like the environmental variables, the 
child and parent reported pubertal developmental scales are 
self-reported items that may incur some biases. In the conceptual paths, 
several linear relationships are assumed to exist based on detailed 
theoretical frameworks in Thijssen et al. (2020). Nevertheless, adoles
cent pubertal development “acts on re-activation of specific neuroendocrine 
systems” (Forbes and Dahl, 2010, p. 67); therefore, knowing the tem
poral nature of environmental stressors may be important to understand 
its effects on neural and pubertal development. While some effects may 
be small in a cross-sectional analysis, the cumulative associations among 
the environment, puberty and brain may be substantial over the course 
of development (Funder and Ozer, 2019). In the context of the replica
tion and multiverse analyses, the causal and cumulative effects cannot 
be accounted for in these data. 

Finally, the analyses here focused solely on the tabulated brain im
aging data provided by the ABCD consortium and did not focus on 
alternative operationalizations of brain data. Based on recent analyses 
demonstrating the impact of decisions within an analytic pipeline 
(Bloom et al., 2021), between analytic pipelines in neuroimaging (Li 
et al., 2021) and different brain parcellations on the resulting estimates 
(Bryce et al., 2021), this multiverse analysis was not well positioned to 
answer questions regarding how differences in the operationalization of 
brain variables impacted the mediating models. Future studies focused 
on replications and multiverse analyses of ABCD data should consider 
using a combination of data that are tabulated by the consortium and 
those that test deviations from those methods. This is especially 
important as the consortium makes updates and/or changes to the 
preprocessing pipelines. 

5. Conclusion 

The future of developmental science will increasingly involve large 
consortium secondary datasets, such as the ABCD study, to answer 
valuable developmental questions. Evaluating how effects replicate be
tween teams of researchers, across releases and with different variable 
permutations will be an important part of the process to ensure the 
robustness of findings. We conducted a replication and extension of a 
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previously published study using measures of environmental experi
ences, pubertal development and brain structural and functional vari
ables. Specifically, we evaluated the convergence between conclusions 
from the original and replicated study and across alternative oper
ationalizations of the environment and pubertal development variables. 
Despite the similarities in the study design, based on the assessment of 
effects and statistical parameters, only a portion of effects were deemed 
to have replicated. In the case of the multiverse analysis, we found the 
mechanistic role of puberty in the association between the environment 
and the brain may be, in part, impacted by how the environment is 
operationalized, but was consistently altered by how puberty is oper
ationalized in the data. This study demonstrates the nuance across 
environmental variables in the ABCD data and lack of consensus across 
parent and child reported puberty scales. 

Data & code availability statement 

As described in the methods section of the manuscript, the data used 
here are associated with the ABCD Study 3.0 Data Release. Specifically, 
the NDA #1182451 package (DOI: 10.15154/1519007) was down
loaded using the NDA Download Manager and associated data text files 
were read into R. As described on the ABCD study website (https://a 
bcdstudy.org/scientists/data-sharing/), researchers can access this 
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R files on Github (see Demidenko, 2022). 

Author’s contribution 

MID acquired the necessary access, IRB approvals and data use 
agreements with U-M and NDA. MID, DPK, FAH and KIP, with support of 
DPK, conceived of the methodology. The original study authors, ST and 
ML, provided clarification(s) regarding methodology. MID implemented 
the methodology, conducted formal analyses and visualization with the 
support of DPK, FAH, KIP, SL, HB and SH. DPK, FAH, KIP, SL, HB, SH and 
ST assisted with necessary validation. MD, DPK, FAH, KIP, SL, HB and 
SH wrote the original draft with assistance from ST, ML and DPK. All 
authors read and approved the manuscript. 

Conflicts of interest 

The authors declare that they have no conflicts of interest. 

Acknowledgments 

MID & FAH are funded by the Eunice Kennedy Shriver National 
Institute of Child Health and Human Development Developmental 
Training grant (T32HD007109-34, McLoyd & Monk). KIP is funded by 
the Susan Nolan-Hoeksema Postdoctoral Fellowship. Data used in the 
preparation of this article were obtained from the Adolescent Brain 
Cognitive Development (ABCD) Study (https://abcdstudy.org), held in 
the NIMH Data Archive (NDA). This is a multisite, longitudinal study 
designed to recruit more than 10,000 children age 9–10 and follow them 
over 10 years into early adulthood. The ABCD Study is supported by the 
National Institutes of Health and additional federal partners under 
award numbers U01DA041022, U01DA041028, U01DA041048, 
U01DA041089, U01DA041106, U01DA041117, U01DA041120, 
U01DA041134, U01DA041148, U01DA041156, U01DA041174, 
U24DA041123, U24DA041147, U01DA041093, and U01DA041025. A 
full list of supporters is available at https://abcdstudy.org/federal-part 
ners.html. A listing of participating sites and a complete listing of the 
study investigators can be found at https://abcdstudy.org/scientists/wo 
rkgroups/. ABCD consortium investigators designed and implemented 
the study and/or provided data but did not necessarily participate in 
analysis or writing of this report. This manuscript reflects the views of 

the authors and may not reflect the opinions or views of the NIH or 
ABCD consortium investigators. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ynirp.2022.100133. 

References 

Achenbach, T.M., Rescorla, L.A., 2003. Manual for the ASEBA Adult Forms & Profiles. 
Burlington, VT. University of Vermont, Research Center for Children, Youth, & 
Families.  

Argabright, S.T., Visoki, E., Moore, T.M., Ryan, D.T., DiDomenico, G.E., Njoroge, W.F.M., 
Taylor, J.H., Guloksuz, S., Gur, R.C., Gur, R.E., Benton, T.D., Barzilay, R., 2022. 
Association between discrimination stress and suicidality in preadolescent children. 
Focus 20 (2), 252–262. https://doi.org/10.1176/appi.focus.22020005. 

Artner, R., Verliefde, T., Steegen, S., Gomes, S., Traets, F., Tuerlinckx, F., Vanpaemel, W., 
2021. The reproducibility of statistical results in psychological research: an 
investigation using unpublished raw data. Psychol. Methods 26 (5), 527–546. 
https://doi.org/10.1037/met0000365. 

Barch, D.M., Albaugh, M.D., Avenevoli, S., Chang, L., Clark, D.B., Glantz, M.D., 
Hudziak, J.J., Jernigan, T.L., Tapert, S.F., Yurgelun-Todd, D., Alia-Klein, N., 
Potter, A.S., Paulus, M.P., Prouty, D., Zucker, R.A., Sher, K.J., 2018. Demographic, 
physical and mental health assessments in the adolescent brain and cognitive 
development study: rationale and description. Developmental Cognitive 
Neuroscience 32, 55–66. https://doi.org/10.1016/j.dcn.2017.10.010. 

Baron, R.M., Kenny, D.A., 1986. The moderator-mediator variable distinction in social 
psychological research: conceptual, strategic, and statistical considerations. J. Pers. 
Soc. Psychol. 51 (6), 1173–1182. https://doi.org/10.1037//0022-3514.51.6.1173. 

Belsky, J., 2019. Early-life adversity accelerates child and adolescent development. Curr. 
Dir. Psychol. Sci. 28 (3), 241–246. https://doi.org/10.1177/0963721419837670. 

Belsky, J., Steinberg, L., Draper, P., 1991. Childhood experience, interpersonal 
development, and reproductive strategy: an evolutionary theory of socialization. 
Child Dev. 62 (4), 647–670. https://doi.org/10.2307/1131166. 

Bick, J., Nelson, C.A., 2016. Early adverse experiences and the developing brain. 
Neuropsychopharmacology 41 (1), 177–196. https://doi.org/10.1038/ 
npp.2015.252. 

Bloom, P.A., VanTieghem, M., Gabard-Durnam, L., Gee, D.G., Flannery, J., Caldera, C., 
Goff, B., Telzer, E.H., Humphreys, K.L., Fareri, D.S., Shapiro, M., Algharazi, S., 
Bolger, N., Aly, M., Tottenham, N., 2021. Age-related change in task-evoked 
amygdala-prefrontal circuitry: a multiverse approach with an accelerated 
longitudinal cohort aged 4-22 years, 10.08.463601. https://doi.org/10.1101/2021. 
10.08.463601, 2021.  

Botvinik-Nezer, R., Holzmeister, F., Camerer, C.F., Dreber, A., Huber, J., 
Johannesson, M., Kirchler, M., Iwanir, R., Mumford, J.A., Adcock, R.A., Avesani, P., 
Baczkowski, B.M., Bajracharya, A., Bakst, L., Ball, S., Barilari, M., Bault, N., 
Beaton, D., Beitner, J., et al., 2020. Variability in the analysis of a single 
neuroimaging dataset by many teams. Nature 582 (7810), 84–88. https://doi.org/ 
10.1038/s41586-020-2314-9. 

Bowring, A., Nichols, T.E., Maumet, C., 2022. Isolating the sources of pipeline-variability 
in group-level task-fMRI results. Hum. Brain Mapp. 43 (3), 1112–1128. https://doi. 
org/10.1002/hbm.25713. 

Bronfenbrenner, U., Morris, P.A., 2007. The bioecological model of human development. 
In: Handbook of Child Psychology. American Cancer Society. https://doi.org/ 
10.1002/9780470147658.chpsy0114. 

Bryce, N.V., Flournoy, J.C., Guassi Moreira, J.F., Rosen, M.L., Sambook, K.A., Mair, P., 
McLaughlin, K.A., 2021. Brain parcellation selection: an overlooked decision point 
with meaningful effects on individual differences in resting-state functional 
connectivity. Neuroimage 243, 118487. https://doi.org/10.1016/j. 
neuroimage.2021.118487. 

Callaghan, B.L., Tottenham, N., 2016. The Stress Acceleration Hypothesis: effects of 
early-life adversity on emotion circuits and behavior. Current Opinion in Behavioral 
Sciences 7, 76–81. https://doi.org/10.1016/j.cobeha.2015.11.018. 

Casey, B.J., Cannonier, T., Conley, M.I., Cohen, A.O., Barch, D.M., Heitzeg, M.M., 
Soules, M.E., Teslovich, T., Dellarco, D.V., Garavan, H., Orr, C.A., Wager, T.D., 
Banich, M.T., Speer, N.K., Sutherland, M.T., Riedel, M.C., Dick, A.S., Bjork, J.M., 
Thomas, K.M., et al., 2018. The adolescent brain cognitive development (ABCD) 
study: imaging acquisition across 21 sites. Developmental Cognitive Neuroscience 
32, 43–54. https://doi.org/10.1016/j.dcn.2018.03.001. 

Cheng, T.W., Magis-Weinberg, L., Guazzelli Williamson, V., Ladouceur, C.D., Whittle, S. 
L., Herting, M.M., Uban, K.A., Byrne, M.L., Barendse, M.E.A., Shirtcliff, E.A., 
Pfeifer, J.H., 2021. A researcher’s guide to the measurement and modeling of 
puberty in the ABCD Study® at baseline. Front. Endocrinol. 12, 471. https://doi.org/ 
10.3389/fendo.2021.608575. 

Chilcoat, H.D., Anthony, J.C., 1996. Impact of parent monitoring on initiation of drug 
use through late childhood. J. Am. Acad. Child Adolesc. Psychiatry 35 (1), 91–100. 
https://doi.org/10.1097/00004583-199601000-00017. 

Clawson, A., Strang, J.F., Wallace, G.L., Gomez-Lobo, V., Jack, A., Webb, S.J., 
Pelphrey, K.A., 2020. Parent-child concordance on the Pubertal Development Scale 
in typically developing and autistic youth. Research in Autism Spectrum Disorders 
77, 101610. https://doi.org/10.1016/j.rasd.2020.101610. 

M.I. Demidenko et al.                                                                                                                                                                                                                          

https://abcdstudy.org/scientists/data-sharing/
https://abcdstudy.org/scientists/data-sharing/
https://abcdstudy.org
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/scientists/workgroups/
https://abcdstudy.org/scientists/workgroups/
https://doi.org/10.1016/j.ynirp.2022.100133
https://doi.org/10.1016/j.ynirp.2022.100133
http://refhub.elsevier.com/S2666-9560(22)00057-5/sref1
http://refhub.elsevier.com/S2666-9560(22)00057-5/sref1
http://refhub.elsevier.com/S2666-9560(22)00057-5/sref1
https://doi.org/10.1176/appi.focus.22020005
https://doi.org/10.1037/met0000365
https://doi.org/10.1016/j.dcn.2017.10.010
https://doi.org/10.1037//0022-3514.51.6.1173
https://doi.org/10.1177/0963721419837670
https://doi.org/10.2307/1131166
https://doi.org/10.1038/npp.2015.252
https://doi.org/10.1038/npp.2015.252
https://doi.org/10.1101/2021.10.08.463601
https://doi.org/10.1101/2021.10.08.463601
https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.1002/hbm.25713
https://doi.org/10.1002/hbm.25713
https://doi.org/10.1002/9780470147658.chpsy0114
https://doi.org/10.1002/9780470147658.chpsy0114
https://doi.org/10.1016/j.neuroimage.2021.118487
https://doi.org/10.1016/j.neuroimage.2021.118487
https://doi.org/10.1016/j.cobeha.2015.11.018
https://doi.org/10.1016/j.dcn.2018.03.001
https://doi.org/10.3389/fendo.2021.608575
https://doi.org/10.3389/fendo.2021.608575
https://doi.org/10.1097/00004583-199601000-00017
https://doi.org/10.1016/j.rasd.2020.101610


Neuroimage: Reports 2 (2022) 100133

14

Cohen, J., 1994. The earth is round (p < .05). Am. Psychol. 49 (12), 997–1003. https:// 
doi.org/10.1037/0003-066X.49.12.997. 

Colich, N.L., Rosen, M.L., Williams, E.S., McLaughlin, K.A., 2020. Biological aging in 
childhood and adolescence following experiences of threat and deprivation: a 
systematic review and meta-analysis. Psychol. Bull. 146 (9), 721–764. https://doi. 
org/10.1037/bul0000270. 

Conger, R.D., Conger, K.J., Martin, M.J., 2010. Socioeconomic status, family Processes, 
and individual development. J. Marriage Fam. 72 (3), 685–704. https://doi.org/ 
10.1111/j.1741-3737.2010.00725.x. 

Conger, R.D., Wallace, L.E., Sun, Y., Simons, R.L., McLoyd, V.C., Brody, G.H., 2002. 
Economic pressure in African American families: a replication and extension of the 
family stress model. Dev. Psychol. 38 (2), 179–193. 

Corrás, T., Seijo, D., Fariña, F., Novo, M., Arce, R., Cabanach, R.G., 2017. What and how 
much do children lose in academic settings owing to parental separation? Front. 
Psychol. 8, 1545. https://doi.org/10.3389/fpsyg.2017.01545. 

De Bellis, M.D., Keshavan, M.S., Clark, D.B., Casey, B.J., Giedd, J.N., Boring, A.M., 
Frustaci, K., Ryan, N.D., 1999. Developmental traumatology part II: brain 
development**See accompanying Editorial, in this issue. Biol. Psychiatr. 45 (10), 
1271–1284. https://doi.org/10.1016/S0006-3223(99)00045-1. 

DeJoseph, M.L., Herzberg, M.P., Sifre, R.D., Berry, D., Thomas, K.M., 2022. Measurement 
matters: an individual differences examination of family socioeconomic factors, 
latent dimensions of children’s experiences, and resting state functional brain 
connectivity in the ABCD sample. Developmental Cognitive Neuroscience 53, 
101043. https://doi.org/10.1016/j.dcn.2021.101043. 

Del Giacco, A.C., Jones, S.A., Morales, A.M., Kliamovich, D., Nagel, B.J., 2021. 
Adolescent novelty seeking is associated with greater ventral striatal and prefrontal 
brain response during evaluation of risk and reward. Cognit. Affect Behav. Neurosci. 
https://doi.org/10.3758/s13415-021-00937-2. 

Demidenko, M.I., 2022. Associated Code for an Open-Data Replication and Multiverse 
Analysis of an ABCD Study®: Mediating Effect of Pubertal Stages on the Family 
Environment and Neurodevelopment. https://doi.org/10.5281/zenodo.6819653. 
Zenodo.  

Demidenko, M.I., Ip, K.I., Kelly, D.P., Constante, K., Goetschius, L.G., Keating, D.P., 
2021. Ecological stress, amygdala reactivity, and internalizing symptoms in 
preadolescence: is parenting a buffer? Cortex 140, 128–144. https://doi.org/ 
10.1016/j.cortex.2021.02.032. 

Dick, A.S., Lopez, D.A., Watts, A.L., Heeringa, S., Reuter, C., Bartsch, H., Fan, C.C., 
Kennedy, D.N., Palmer, C., Marshall, A., Haist, F., Hawes, S., Nichols, T.E., Barch, D. 
M., Jernigan, T.L., Garavan, H., Grant, S., Pariyadath, V., Hoffman, E., et al., 2021. 
Meaningful associations in the adolescent brain cognitive development study. 
Neuroimage 239, 118262. https://doi.org/10.1016/j.neuroimage.2021.118262. 

Dorn, L.D., Susman, E.J., Ponirakis, A., 2003. Pubertal timing and adolescent adjustment 
and behavior: conclusions vary by rater. J. Youth Adolesc. 32 (3), 157–167. https:// 
doi.org/10.1023/A:1022590818839. 

Duffy, K.A., McLaughlin, K.A., Green, P.A., 2018. Early life adversity and health-risk 
behaviors: proposed psychological and neural mechanisms. Ann. N. Y. Acad. Sci. 
1428 (1), 151–169. https://doi.org/10.1111/nyas.13928. 

Ellis, B.J., Garber, J., 2000. Psychosocial antecedents of variation in girls’ pubertal 
timing: maternal depression, stepfather presence, and marital and family stress. 
Child Dev. 71 (2), 485–501. https://doi.org/10.1111/1467-8624.00159. 

Ellis, B.J., Shirtcliff, E.A., Boyce, W.T., Deardorff, J., Essex, M.J., 2011. Quality of early 
family relationships and the timing and tempo of puberty: effects depend on 
biological sensitivity to context. Dev. Psychopathol. 23 (1), 85–99. https://doi.org/ 
10.1017/S0954579410000660. 

Ellwood-Lowe, M.E., Whitfield-Gabrieli, S., Bunge, S.A., 2021. Brain network coupling 
associated with cognitive performance varies as a function of a child’s environment 
in the ABCD study. Nat. Commun. 12 (1), 7183. https://doi.org/10.1038/s41467- 
021-27336-y. 

Evans, G.W., Li, D., Whipple, S.S., 2013. Cumulative risk and child development. 
Psychol. Bull. 139 (6), 1342–1396. https://doi.org/10.1037/a0031808. 

Farah, M.J., 2017. The neuroscience of socioeconomic status: correlates, causes, and 
consequences. Neuron 96 (1), 56–71. https://doi.org/10.1016/j. 
neuron.2017.08.034. 

Farah, M.J., 2018. Socioeconomic status and the brain: prospects for neuroscience- 
informed policy. Nat. Rev. Neurosci. 19 (7), 428–438. https://doi.org/10.1038/ 
s41583-018-0023-2. 

Flake, J.K., Luong, R., Shaw, M., 2022. Addressing a crisis of generalizability with large- 
scale construct validation. Behav. Brain Sci. 45 https://doi.org/10.1017/ 
S0140525X21000376. 

Fletcher, S.C., 2021. How (not) to measure replication. European Journal for Philosophy 
of Science 11 (2), 57. https://doi.org/10.1007/s13194-021-00377-2. 

Flouri, E., Midouhas, E., Joshi, H., 2014. Family poverty and trajectories of children’s 
emotional and behavioural problems: the moderating roles of self-regulation and 
verbal cognitive ability. J. Abnorm. Child Psychol. 42 (6), 1043–1056. https://doi. 
org/10.1007/s10802-013-9848-3. 

Forbes, E.E., Dahl, R.E., 2010. Pubertal development and behavior: hormonal activation 
of social and motivational tendencies. Brain Cognit. 72 (1), 66–72. https://doi.org/ 
10.1016/j.bandc.2009.10.007. 

Funder, D.C., Ozer, D.J., 2019. Evaluating effect size in psychological research: sense and 
nonsense. Advances in Methods and Practices in Psychological Science 2 (2), 
156–168. https://doi.org/10.1177/2515245919847202. 

Gach, E.J., Ip, K.I., Sameroff, A.J., Olson, S.L., 2018. Early cumulative risk predicts 
externalizing behavior at age 10: the mediating role of adverse parenting. J. Fam. 
Psychol.: JFP: Journal of the Division of Family Psychology of the American 
Psychological Association (Division 43) 32 (1), 92–102. https://doi.org/10.1037/ 
fam0000360. 

Garavan, H., Bartsch, H., Conway, K., Decastro, A., Goldstein, R.Z., Heeringa, S., 
Jernigan, T., Potter, A., Thompson, W., Zahs, D., 2018. Recruiting the ABCD sample: 
design considerations and procedures. Developmental Cognitive Neuroscience 32, 
16–22. https://doi.org/10.1016/j.dcn.2018.04.004. 

Gee, D.G., Humphreys, K.L., Flannery, J., Goff, B., Telzer, E.H., Shapiro, M., Hare, T.A., 
Bookheimer, S.Y., Tottenham, N., 2013. A developmental shift from positive to 
negative connectivity in human amygdala–prefrontal circuitry. J. Neurosci. 33 (10), 
4584–4593. https://doi.org/10.1523/JNEUROSCI.3446-12.2013. 

Gelman, A., Loken, E., 2014. The statistical crisis in science: data-dependent analysis—a" 
garden of forking paths"—explains why many statistically significant comparisons 
don’t hold up. Am. Sci. 102 (6), 460–466. 

Gelman, A., Stern, H., 2006. The difference between “significant” and “not significant” is 
not itself statistically significant. Am. Statistician 60 (4), 328–331. https://doi.org/ 
10.1198/000313006X152649. 

Gonzalez, M.R., Palmer, C.E., Uban, K.A., Jernigan, T.L., Thompson, W.K., Sowell, E.R., 
2020. Positive economic, psychosocial, and physiological ecologies predict brain 
structure and cognitive performance in 9–10-year-old children. Front. Hum. 
Neurosci. 14, 436. https://doi.org/10.3389/fnhum.2020.578822. 

Gonzalez, R., Thompson, E.L., Sanchez, M., Morris, A., Gonzalez, M.R., Feldstein 
Ewing, S.W., Mason, M.J., Arroyo, J., Howlett, K., Tapert, S.F., Zucker, R.A., 2021. 
An update on the assessment of culture and environment in the ABCD Study®: 
emerging literature and protocol updates over three measurement waves. 
Developmental Cognitive Neuroscience 52, 101021. https://doi.org/10.1016/j. 
dcn.2021.101021. 

Hackman, D.A., Farah, M.J., Meaney, M.J., 2010. Socioeconomic status and the brain: 
mechanistic insights from human and animal research. Nat. Rev. Neurosci. 11 (9), 
651–659. https://doi.org/10.1038/nrn2897. 

Hagler, D.J., Hatton, S., Cornejo, M.D., Makowski, C., Fair, D.A., Dick, A.S., 
Sutherland, M.T., Casey, B.J., Barch, D.M., Harms, M.P., Watts, R., Bjork, J.M., 
Garavan, H.P., Hilmer, L., Pung, C.J., Sicat, C.S., Kuperman, J., Bartsch, H., Xue, F., 
et al., 2019. Image processing and analysis methods for the adolescent brain 
cognitive development study. Neuroimage 202, 116091. https://doi.org/10.1016/j. 
neuroimage.2019.116091. 

Hair, N.L., Hanson, J.L., Wolfe, B.L., Pollak, S.D., 2015. Association of child poverty, 
brain development, and academic achievement. JAMA Pediatr. 169 (9), 822–829. 
https://doi.org/10.1001/jamapediatrics.2015.1475. 

Hanson, J.L., Hair, N., Shen, D.G., Shi, F., Gilmore, J.H., Wolfe, B.L., Pollak, S.D., 2013. 
Family poverty affects the rate of human infant brain growth. PLoS One 8 (12), 
e80954. https://doi.org/10.1371/journal.pone.0080954. 

Herting, M.M., Uban, K.A., Gonzalez, M.R., Baker, F.C., Kan, E.C., Thompson, W.K., 
Granger, D.A., Albaugh, M.D., Anokhin, A.P., Bagot, K.S., Banich, M.T., Barch, D.M., 
Baskin-Sommers, A., Breslin, F.J., Casey, B.J., Chaarani, B., Chang, L., Clark, D.B., 
Cloak, C.C., et al., 2021. Correspondence between perceived pubertal development 
and hormone levels in 9-10 Year-olds from the adolescent brain cognitive 
development study. Front. Endocrinol. 11, 1012. https://doi.org/10.3389/ 
fendo.2020.549928. 

Hodson, G., 2021. Construct jangle or construct mangle? Thinking straight about 
(nonredundant) psychological constructs. Journal of Theoretical Social Psychology 5 
(4), 576–590. https://doi.org/10.1002/jts5.120. 

Hyde, L.W., Gard, A.M., Tomlinson, R.C., Burt, S.A., Mitchell, C., Monk, C.S., 2020. An 
ecological approach to understanding the developing brain: examples linking 
poverty, parenting, neighborhoods, and the brain. Am. Psychol. 75 (9), 1245–1259. 
https://doi.org/10.1037/amp0000741. 

Ip, K.I., Sisk, L.M., Horien, C., Conley, M.I., Rapuano, K.M., Rosenberg, M.D., Greene, A. 
S., Scheinost, D., Constable, R.T., Casey, B., Baskin-Sommers, A., Gee, D.G., 2022. 
Associations among household and neighborhood socioeconomic disadvantages, 
resting-state frontoamygdala connectivity, and internalizing symptoms in youth. 
J. Cognit. Neurosci. 1–32. https://doi.org/10.1162/jocn_a_01826. 

Irvine, E., 2021. The role of replication studies in theory building. Perspect. Psychol. Sci. 
16 (4), 844–853. https://doi.org/10.1177/1745691620970558. 

John, L.K., Loewenstein, G., Prelec, D., 2012. Measuring the prevalence of questionable 
research practices with incentives for truth telling. Psychol. Sci. 23 (5), 524–532. 
https://doi.org/10.1177/0956797611430953. 

Kapetanovic, S., Boson, K., 2020. Discrepancies in parents’ and adolescents’ reports on 
parent-adolescent communication and associations to adolescents’ psychological 
health. Curr. Psychol. https://doi.org/10.1007/s12144-020-00911-0. 

Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., Williamson, D., 
Ryan, N., 1997. Schedule for affective Disorders and Schizophrenia for school-age 
children-present and lifetime version (K-SADS-PL): initial reliability and validity 
data. J. Am. Acad. Child Adolesc. Psychiatry 36 (7), 980–988. https://doi.org/ 
10.1097/00004583-199707000-00021. 

Kim, K., Smith, P.K., 1998. Childhood stress, behavioural symptoms and 
mother–daughter pubertal development. J. Adolesc. 21 (3), 231–240. https://doi. 
org/10.1006/jado.1998.0149. 

Klapwijk, E.T., van den Bos, W., Tamnes, C.K., Raschle, N.M., Mills, K.L., 2021. 
Opportunities for increased reproducibility and replicability of developmental 
neuroimaging. Developmental Cognitive Neuroscience 47, 100902. https://doi.org/ 
10.1016/j.dcn.2020.100902. 

Lakens, D., Adolfi, F.G., Albers, C.J., Anvari, F., Apps, M.A.J., Argamon, S.E., Baguley, T., 
Becker, R.B., Benning, S.D., Bradford, D.E., Buchanan, E.M., Caldwell, A.R., Van 
Calster, B., Carlsson, R., Chen, S.-C., Chung, B., Colling, L.J., Collins, G.S., Crook, Z., 
et al., 2018. Justify your alpha. Nat. Human Behav. 2 (3), 168–171. https://doi.org/ 
10.1038/s41562-018-0311-x. 

Li, X., Ai, L., Giavasis, S., Jin, H., Feczko, E., Xu, T., Clucas, J., Franco, A., Heinsfeld, A.S., 
Adebimpe, A., Vogelstein, J.T., Yan, C.-G., Esteban, O., Poldrack, R.A., Craddock, C., 
Fair, D., Satterthwaite, T., Kiar, G., Milham, M.P., 2021. Moving beyond processing 

M.I. Demidenko et al.                                                                                                                                                                                                                          

https://doi.org/10.1037/0003-066X.49.12.997
https://doi.org/10.1037/0003-066X.49.12.997
https://doi.org/10.1037/bul0000270
https://doi.org/10.1037/bul0000270
https://doi.org/10.1111/j.1741-3737.2010.00725.x
https://doi.org/10.1111/j.1741-3737.2010.00725.x
http://refhub.elsevier.com/S2666-9560(22)00057-5/sref22
http://refhub.elsevier.com/S2666-9560(22)00057-5/sref22
http://refhub.elsevier.com/S2666-9560(22)00057-5/sref22
https://doi.org/10.3389/fpsyg.2017.01545
https://doi.org/10.1016/S0006-3223(99)00045-1
https://doi.org/10.1016/j.dcn.2021.101043
https://doi.org/10.3758/s13415-021-00937-2
https://doi.org/10.5281/zenodo.6819653
https://doi.org/10.1016/j.cortex.2021.02.032
https://doi.org/10.1016/j.cortex.2021.02.032
https://doi.org/10.1016/j.neuroimage.2021.118262
https://doi.org/10.1023/A:1022590818839
https://doi.org/10.1023/A:1022590818839
https://doi.org/10.1111/nyas.13928
https://doi.org/10.1111/1467-8624.00159
https://doi.org/10.1017/S0954579410000660
https://doi.org/10.1017/S0954579410000660
https://doi.org/10.1038/s41467-021-27336-y
https://doi.org/10.1038/s41467-021-27336-y
https://doi.org/10.1037/a0031808
https://doi.org/10.1016/j.neuron.2017.08.034
https://doi.org/10.1016/j.neuron.2017.08.034
https://doi.org/10.1038/s41583-018-0023-2
https://doi.org/10.1038/s41583-018-0023-2
https://doi.org/10.1017/S0140525X21000376
https://doi.org/10.1017/S0140525X21000376
https://doi.org/10.1007/s13194-021-00377-2
https://doi.org/10.1007/s10802-013-9848-3
https://doi.org/10.1007/s10802-013-9848-3
https://doi.org/10.1016/j.bandc.2009.10.007
https://doi.org/10.1016/j.bandc.2009.10.007
https://doi.org/10.1177/2515245919847202
https://doi.org/10.1037/fam0000360
https://doi.org/10.1037/fam0000360
https://doi.org/10.1016/j.dcn.2018.04.004
https://doi.org/10.1523/JNEUROSCI.3446-12.2013
http://refhub.elsevier.com/S2666-9560(22)00057-5/sref46
http://refhub.elsevier.com/S2666-9560(22)00057-5/sref46
http://refhub.elsevier.com/S2666-9560(22)00057-5/sref46
https://doi.org/10.1198/000313006X152649
https://doi.org/10.1198/000313006X152649
https://doi.org/10.3389/fnhum.2020.578822
https://doi.org/10.1016/j.dcn.2021.101021
https://doi.org/10.1016/j.dcn.2021.101021
https://doi.org/10.1038/nrn2897
https://doi.org/10.1016/j.neuroimage.2019.116091
https://doi.org/10.1016/j.neuroimage.2019.116091
https://doi.org/10.1001/jamapediatrics.2015.1475
https://doi.org/10.1371/journal.pone.0080954
https://doi.org/10.3389/fendo.2020.549928
https://doi.org/10.3389/fendo.2020.549928
https://doi.org/10.1002/jts5.120
https://doi.org/10.1037/amp0000741
https://doi.org/10.1162/jocn_a_01826
https://doi.org/10.1177/1745691620970558
https://doi.org/10.1177/0956797611430953
https://doi.org/10.1007/s12144-020-00911-0
https://doi.org/10.1097/00004583-199707000-00021
https://doi.org/10.1097/00004583-199707000-00021
https://doi.org/10.1006/jado.1998.0149
https://doi.org/10.1006/jado.1998.0149
https://doi.org/10.1016/j.dcn.2020.100902
https://doi.org/10.1016/j.dcn.2020.100902
https://doi.org/10.1038/s41562-018-0311-x
https://doi.org/10.1038/s41562-018-0311-x


Neuroimage: Reports 2 (2022) 100133

15

and analysis-related variation in neuroscience, 12.01.470790. https://doi.org/10. 
1101/2021.12.01.470790, 2021.  

Linver, M.R., Brooks-Gunn, J., Kohen, D.E., 2002. Family processes as pathways from 
income to young children’s development. Dev. Psychol. 38 (5), 719–734. https:// 
doi.org/10.1037/0012-1649.38.5.719. 

Loken, E., Gelman, A., 2017. Measurement error and the replication crisis. Science 355 
(6325), 584–585. https://doi.org/10.1126/science.aal3618. 

Ly, A., Etz, A., Marsman, M., Wagenmakers, E.-J., 2019. Replication Bayes factors from 
evidence updating. Behav. Res. Methods 51 (6), 2498–2508. https://doi.org/ 
10.3758/s13428-018-1092-x. 

Mackinnon, D.P., Dwyer, J.H., 1993. Estimating mediated effects in prevention studies. 
Eval. Rev. 17 (2), 144–158. https://doi.org/10.1177/0193841X9301700202. 

Marek, S., Tervo-Clemmens, B., Calabro, F.J., Montez, D.F., Kay, B.P., Hatoum, A.S., 
Donohue, M.R., Foran, W., Miller, R.L., Hendrickson, T.J., Malone, S.M., Kandala, S., 
Feczko, E., Miranda-Dominguez, O., Graham, A.M., Earl, E.A., Perrone, A.J., 
Cordova, M., Doyle, O., et al., 2022. Reproducible brain-wide association studies 
require thousands of individuals. Nature 1–7. https://doi.org/10.1038/s41586-022- 
04492-9. 

McEwen, B.S., Akil, H., 2020. Revisiting the stress concept: implications for affective 
Disorders. J. Neurosci.: J. Soc. Neurosci. 40 (1), 12–21. https://doi.org/10.1523/ 
JNEUROSCI.0733-19.2019. 

McLaughlin, K.A., Sheridan, M.A., Humphreys, K.L., Belsky, J., Ellis, B.J., 2021. The 
value of dimensional models of early experience: thinking clearly about concepts and 
categories. Perspect. Psychol. Sci. 16 (6), 1463–1472. https://doi.org/10.1177/ 
1745691621992346. 

McLaughlin, K.A., Sheridan, M.A., Lambert, H.K., 2014. Childhood adversity and neural 
development: deprivation and threat as distinct dimensions of early experience. 
Neurosci. Biobehav. Rev. 47, 578–591. https://doi.org/10.1016/j. 
neubiorev.2014.10.012. 

McLaughlin, K.A., Sheridan, M.A., Nelson, C.A., 2017. Neglect as a violation of species- 
expectant experience: neurodevelopmental consequences. Biol. Psychiatr. 82 (7), 
462–471. https://doi.org/10.1016/j.biopsych.2017.02.1096. 

McLoyd, V.C., 1998. Socioeconomic disadvantage and child development. Am. Psychol. 
53 (2), 185–204. https://doi.org/10.1037//0003-066x.53.2.185. 

McNeilly, E.A., Saragosa-Harris, N., Mills, K., Dahl, R., Magis-Weinberg, L., 2021. 
Reward sensitivity and internalizing symptoms during the transition to puberty: an 
examination of 9-and 10-year-olds in the ABCD Study. PsyArXiv. https://doi.org/10 
.31234/osf.io/6ebuq. 

McNeish, D., Wolf, M.G., 2021. Dynamic fit index cutoffs for confirmatory factor analysis 
models. Psychological Methods, No Pagination Specified-No Pagination Specified. 
https://doi.org/10.1037/met0000425. 

Mersky, J.P., Janczewski, C.E., Topitzes, J., 2017. Rethinking the measurement of 
adversity: moving toward second-generation research on adverse childhood 
experiences. Child. Maltreat. 22 (1), 58–68. https://doi.org/10.1177/ 
1077559516679513. 

Mischel, W., 2008. The toothbrush problem. APS Observer 21 (11). https://www.psychol 
ogicalscience.org/observer/the-toothbrush-problem. 

Moffitt, T.E., Caspi, A., Belsky, J., Silva, P.A., 1992. Childhood experience and the onset 
of menarche: a test of a sociobiological model. Child Dev. 63 (1), 47–58. https://doi. 
org/10.2307/1130900. 

Moos, R.H., Moos, B.S., 1976. A typology of family social environments. Fam. Process 15 
(4), 357–371. https://doi.org/10.1111/j.1545-5300.1976.00357.x. 

Open Science Collaboration, 2015. Estimating the reproducibility of psychological 
science. Science 349 (6251), aac4716. https://doi.org/10.1126/science.aac4716. 

Orben, A., Dienlin, T., Przybylski, A.K., 2019. Social media’s enduring effect on 
adolescent life satisfaction. Proc. Natl. Acad. Sci. USA 116 (21), 10226–10228. 
https://doi.org/10.1073/pnas.1902058116. 

Oshri, A., Duprey, E.K., Liu, S., Gonzalez, A., 2020. Chapter 14 - ACEs and resilience: 
methodological and conceptual issues. In: Asmundson, G.J.G., Afifi, T.O. (Eds.), 
Adverse Childhood Experiences. Academic Press, pp. 287–306. https://doi.org/ 
10.1016/B978-0-12-816065-7.00014-8. 

Owens, M.M., Potter, A., Hyatt, C.S., Albaugh, M., Thompson, W.K., Jernigan, T., 
Yuan, D., Hahn, S., Allgaier, N., Garavan, H., 2021. Recalibrating expectations about 
effect size: a multi-method survey of effect sizes in the ABCD study. PLoS One 16 (9), 
e0257535. https://doi.org/10.1371/journal.pone.0257535. 

Park, A.T., Leonard, J.A., Saxler, P.K., Cyr, A.B., Gabrieli, J.D.E., Mackey, A.P., 2018. 
Amygdala–medial prefrontal cortex connectivity relates to stress and mental health 
in early childhood. Soc. Cognit. Affect Neurosci. 13 (4), 430–439. https://doi.org/ 
10.1093/scan/nsy017. 

Petersen, A.C., Crockett, L., Richards, M., Boxer, A., 1988. A self-report measure of 
pubertal status: reliability, validity, and initial norms. J. Youth Adolesc. 17 (2), 
117–133. https://doi.org/10.1007/BF01537962. 

Petrican, R., Miles, S., Rudd, L., Wasiewska, W., Graham, K.S., Lawrence, A.D., 2021. 
Pubertal timing and functional neurodevelopmental alterations independently 
mediate the effect of family conflict on adolescent psychopathology. Developmental 
Cognitive Neuroscience 52, 101032. https://doi.org/10.1016/j.dcn.2021.101032. 

Pizzagalli, D.A., 2014. Depression, stress, and anhedonia: toward a synthesis and 
integrated model. Annu. Rev. Clin. Psychol. 10, 393–423. https://doi.org/10.1146/ 
annurev-clinpsy-050212-185606. 

Pollak, S.D., Smith, K.E., 2021. Thinking clearly about biology and childhood adversity: 
next steps for continued progress. Perspect. Psychol. Sci. 16 (6), 1473–1477. https:// 
doi.org/10.1177/17456916211031539. 

Proulx, T., Morey, R.D., 2021. Beyond statistical ritual: theory in psychological science. 
Perspect. Psychol. Sci.: A Journal of the Association for Psychological Science 16 (4), 
671–681. https://doi.org/10.1177/17456916211017098. 

R Core Team, 2020. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing. https://www.R-project.org/. 

Rakesh, D., Seguin, C., Zalesky, A., Cropley, V., Whittle, S., 2021a. Associations between 
neighborhood disadvantage, resting-state functional connectivity, and behavior in 
the adolescent brain cognitive development study: the moderating role of positive 
family and school environments. Biol. Psychiatr.: Cognitive Neuroscience and 
Neuroimaging 6 (9), 877–886. https://doi.org/10.1016/j.bpsc.2021.03.008. 

Rakesh, D., Zalesky, A., Whittle, S., 2021b. Similar but distinct – effects of different 
socioeconomic indicators on resting state functional connectivity: findings from the 
Adolescent Brain Cognitive Development (ABCD) Study. Developmental Cognitive 
Neuroscience 51, 101005. https://doi.org/10.1016/j.dcn.2021.101005. 

Repetti, R.L., Taylor, S.E., Seeman, T.E., 2002. Risky families: family social environments 
and the mental and physical health of offspring. Psychol. Bull. 128 (2), 330–366. 

Rijnhart, J.J.M., Twisk, J.W.R., Deeg, D.J.H., Heymans, M.W., 2021. Assessing the 
Robustness of Mediation Analysis Results Using Multiverse Analysis. Prevention 
Science. https://doi.org/10.1007/s11121-021-01280-1. 

Rohrer, J.M., Hünermund, P., Arslan, R.C., Elson, M., 2021. That’s a lot to process! 
Pitfalls of popular path models. PsyArXiv. https://doi.org/10.31234/osf.io/paeb7. 

Romero, F., 2019. Philosophy of science and the replicability crisis. Philos. Compass 14 
(11), e12633. https://doi.org/10.1111/phc3.12633. 

Rosseel, Y., 2012. Lavaan: an R package for structural equation modeling. J. Stat. 
Software 48 (1), 1–36. https://doi.org/10.18637/jss.v048.i02. 

Rosseel, Y., Jorgensen, T.D., Rockwood, N., Oberski, D., Byrnes, J., Vanbrabant, L., 
Savalei, V., Merkle, E., Hallquist, M., Rhemtulla, M., Katsikatsou, M., Barendse, M., 
Scharf, F., Du, H., 2021. Lavaan: Latent Variable Analysis [Computer software], 0.6- 
9. https://CRAN.R-project.org/package=lavaan. 

Rubin, M., 2021. When to adjust alpha during multiple testing: a consideration of 
disjunction, conjunction, and individual testing. Synthese. https://doi.org/10.1007/ 
s11229-021-03276-4. 

Schaefer, E.S., 1965. Children’s reports of parental behavior: an inventory. Child Dev. 36 
(2), 413–424. https://doi.org/10.2307/1126465. 

Simmons, J.P., Nelson, L.D., Simonsohn, U., 2011. False-positive psychology: undisclosed 
flexibility in data collection and analysis allows presenting anything as significant. 
Psychol. Sci. 22 (11), 1359–1366. https://doi.org/10.1177/0956797611417632. 

Simonsohn, U., Nelson, L.D., Simmons, J.P., 2014. P-curve: a key to the file-drawer. 
J. Exp. Psychol. Gen. 143 (2), 534–547. https://doi.org/10.1037/a0033242. 

Simonsohn, U., Simmons, J.P., Nelson, L.D., 2020. Specification curve analysis. Nat. 
Human Behav. 1 https://doi.org/10.1038/s41562-020-0912-z. –7.  

Smith, K.E., Pollak, S.D., 2020. Rethinking concepts and categories for understanding the 
neurodevelopmental effects of childhood adversity. Perspect. Psychol. Sci. 
1745691620920725 https://doi.org/10.1177/1745691620920725. 

Sripada, C., Angstadt, M., Taxali, A., Clark, D.A., Greathouse, T., Rutherford, S., 
Dickens, J.R., Shedden, K., Gard, A.M., Hyde, L.W., Weigard, A., Heitzeg, M., 2021. 
Brain-wide functional connectivity patterns support general cognitive ability and 
mediate effects of socioeconomic status in youth. Transl. Psychiatry 11 (1), 1–8. 
https://doi.org/10.1038/s41398-021-01704-0. 

Steegen, S., Tuerlinckx, F., Gelman, A., Vanpaemel, W., 2016. Increasing transparency 
through a multiverse analysis: perspectives on psychological science. https://doi. 
org/10.1177/1745691616658637. 

Taylor, R.L., Cooper, S.R., Jackson, J.J., Barch, D.M., 2020. Assessment of neighborhood 
poverty, cognitive function, and prefrontal and hippocampal volumes in children. 
JAMA Netw. Open 3 (11). https://doi.org/10.1001/jamanetworkopen.2020.23774. 

Thijssen, S., Collins, P.F., Luciana, M., 2020. Pubertal development mediates the 
association between family environment and brain structure and function in 
childhood. Dev. Psychopathol. 32 (2), 687–702. https://doi.org/10.1017/ 
S0954579419000580. 

Thijssen, S., Collins, P.F., Luciana, M., 2021. Pubertal development mediates the 
association between family environment and brain structure and function in 
childhood – addendum. Dev. Psychopathol. 33 (1), 372–375. https://doi.org/ 
10.1017/S0954579420000322. 

Thijssen, S., Collins, P.F., Luciana, M., 2022. Does pubertal stage mediate the association 
between family environment and structure and function of the amygdala-mPFC 
circuit? A replication study of the longitudinal ABCD cohort. Developmental 
Cognitive Neuroscience 56, 101120. https://doi.org/10.1016/j.dcn.2022.101120. 

Thijssen, S., Muetzel, R.L., Bakermans-Kranenburg, M.J., Jaddoe, V.W.V., Tiemeier, H., 
Verhulst, F.C., White, T., Ijzendoorn, M.H.V., 2017. Insensitive parenting may 
accelerate the development of the amygdala–medial prefrontal cortex circuit. Dev. 
Psychopathol. 29 (2), 505–518. https://doi.org/10.1017/S0954579417000141. 

Thompson, W.H., Wright, J., Bissett, P.G., 2020. Open exploration. Elife 9, e52157. 
https://doi.org/10.7554/eLife.52157. 

Tooley, U.A., Bassett, D.S., Mackey, A.P., 2021. Environmental influences on the pace of 
brain development. Nat. Rev. Neurosci. 22 (6), 372–384. https://doi.org/10.1038/ 
s41583-021-00457-5. 

Volkow, N.D., Koob, G.F., Croyle, R.T., Bianchi, D.W., Gordon, J.A., Koroshetz, W.J., 
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