1,270 research outputs found

    Stigma and the in(visible) perspectives and expectations of home oxygen therapy among people with chronic breathlessness syndrome: A qualitative study

    Full text link
    © The Author(s) 2018. Background: Chronic breathlessness syndrome in the context of advancing disease is distressing for all concerned. Oxygen is commonly prescribed in this setting; however, little is known about the perspectives of breathless people who either are on oxygen or are yet to have it prescribed. Aim: To understand and describe the perspectives and experiences of breathless people towards oxygen use at home. Design: This qualitative study utilised an interpretive description approach using semi-structured interviews and thematic analysis. Setting/participants: A total of 19 people with chronic breathlessness syndrome living in South Australia participated in semi-structured interviews. Participants were divided into sub-groups according to whether they were chronically breathless and (1) not using home oxygen (n = 6), (2) using funded home oxygen for severe hypoxaemia (n = 7) and (3) using home oxygen for palliation outside of funding guidelines (n = 6). Results: Three main themes were identified: (1) managing distress and living with chronic breathlessness syndrome, with or without oxygen, requires a range of self-management strategies; (2) expectations of oxygen use: ‘Not as good as I thought it would be’; and (3) the stigma of using oxygen: the visible and invisible. Conclusion: People living with chronic breathlessness struggle daily with both the progression of the underlying disease and the distressing nature of the syndrome. While oxygen does provide benefit for some people, its use and the perceptions of its use are often associated with both the visible and invisible manifestations of stigma. Clinicians need to promote self-management strategies and give careful thought to the prescribing of home oxygen, especially outside the current funding guidelines

    Preliminary development and validation of a new endof-life patient-reported outcome measure assessing the ability of patients to finalise their affairs at the end of life

    Get PDF
    Introduction:The ability of patients to finalise their affairs at the end of life is an often neglected aspect of quality of life (QOL) measurement in palliative care effectiveness research despite compelling evidence of the high value patients place on this domain. Objective: This paper describes the preliminary development and evaluation of a new, single-item, end-of-life patientreported outcome measure (EOLPRO) designed to capture changes in the ability of patients to finalise their affairs at the end of life. Methods: Cognitive interviews with purposively sampled Australian palliative care patients (N = 9) were analysed thematically to explore content validity. Simultaneously, secondary analysis of data from a randomised controlled trial comparing ketamine and placebo for the management of cancer pain (N = 185) evaluated: construct validity; test-retest reliability; and responsiveness. Results:Preliminary findings suggest patients interpret the new measure consistently. The EOLPRO captures the ability to complete physical tasks and finalise practical matters although it is unclear whether emotional tasks or resolution of relationship issues are considered. Personal and financial affairs should be separated to allow for differences in ability for these two types of affairs. The significant correlation between performance status and EOLPRO scores (r = 0.41, p,<.01, n = 137) and expected relationships between EOLPRO and proximity to death and constipation demonstrated construct validity. Pre-and post-treatment EOLPRO scores moderately agreed (n = 14, k = 0.52 [95% CI 0.19, 0.84]) supporting reliability. The measure's apparent lack of sensitivity to discriminate between treatment responders and non-responders may be confounded. Conclusion:Based on the preliminary findings, the EOLPRO should be separated into 'personal' and 'financial' affairs with further testing suggested, particularly to verify coverage and responsiveness. Initial evaluation suggests that the single-item EOLPRO is a useful addition to QOL outcome measurement in palliative care effectiveness research because common palliative care specific QOL questionnaires do not include or explicitly capture this domain. © 2014 McCaffrey et al

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for pp collisions at √s=5.02 and 13 TeV and p+Pb collisions at √sNN=5.02 TeV with the ATLAS detector

    Get PDF
    ATLAS measurements of two-particle correlations are presented for √s=5.02 and 13 TeV ppcollisions and for √sNN=5.02 TeV p+Pb collisions at the LHC. The correlation functions are measured as a function of relative azimuthal angle Δϕ, and pseudorapidity separation Δη, using charged particles detected within the pseudorapidity interval |η|2, is studied using a template fitting procedure to remove a “back-to-back” contribution to the correlation function that primarily arises from hard-scattering processes. In addition to the elliptic, cos (2Δϕ), modulation observed in a previous measurement, the pp correlation functions exhibit significant cos (3Δϕ) and cos (4Δϕ) modulation. The Fourier coefficients vn, n associated with the cos (nΔϕ) modulation of the correlation functions for n=2–4 are measured as a function of charged-particle multiplicity and charged-particle transverse momentum. The Fourier coefficients are observed to be compatible with cos (nϕ) modulation of per-event single-particle azimuthal angle distributions. The single-particle Fourier coefficients vn are measured as a function of charged-particle multiplicity, and charged-particle transverse momentum for n=2–4. The integrated luminosities used in this analysis are, 64nb−1 for the √s=13 TeV pp data, 170 nb−1 for the √ s = 5.02 TeV pp data, and 28 nb−1 for the √sNN = 5.02 TeV p+Pb data

    Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb−1 of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for heavy neutral Higgs bosons and Z′ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb−1 from proton-proton collisions at √s=13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to τ+τ− with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for Z′ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude tan β > 1.0 for mA= 0.25 TeV and tan β > 42 for mA=1.5 TeV at the 95% confidence level. For the Sequential Standard Model, ZSSM′ with mZ′< 2.42 TeV is excluded at 95% confidence level, while Z NU′ with mZ ′ < 2.25 TeV is excluded for the non-universal G(221) model that exhibits enhanced couplings to third-generation fermions

    Searches for the Zγ decay mode of the Higgs boson and for new high-mass resonances in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    This article presents searches for the Zγ decay of the Higgs boson and for narrow high-mass resonances decaying to Zγ, exploiting Z boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb−1 of pp collisions at √s=13 recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model pp → H → Zγ production and decay) upper limit on the production cross section times the branching ratio for pp → H → Zγ is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level

    Search for heavy resonances decaying into WW in the eνμν eνμν final state in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for neutral heavy resonances is performed in the WW→eνμν decay channel using pp collision data corresponding to an integrated luminosity of 36.1fb−1, collected at a centre-of-mass energy of 13TeV by the ATLAS detector at the Large Hadron Collider. No evidence of such heavy resonances is found. In the search for production via the quark–antiquark annihilation or gluon–gluon fusion process, upper limits on σX×B(X→WW) as a function of the resonance mass are obtained in the mass range between 200GeV GeV and up to 5TeV for various benchmark models: a Higgs-like scalar in different width scenarios, a two-Higgs-doublet model, a heavy vector triplet model, and a warped extra dimensions model. In the vector-boson fusion process, constraints are also obtained on these resonances, as well as on a Higgs boson in the Georgi–Machacek model and a heavy tensor particle coupling only to gauge bosons

    Measurement of jet fragmentation in Pb+Pb and pp collisions at √s NN =5.02 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of jet fragmentation functions in 0.49 nb −1 of Pb+Pb collisions and 25 pb −1 of pp collisions at √ sNN =5.02 TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in pp collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed
    corecore