388 research outputs found
Equivalence of three-dimensional spacetimes
A solution to the equivalence problem in three-dimensional gravity is given
and a practically useful method to obtain a coordinate invariant description of
local geometry is presented. The method is a nontrivial adaptation of Karlhede
invariant classification of spacetimes of general relativity. The local
geometry is completely determined by the curvature tensor and a finite number
of its covariant derivatives in a frame where the components of the metric are
constants. The results are presented in the framework of real two-component
spinors in three-dimensional spacetimes, where the algebraic classifications of
the Ricci and Cotton-York spinors are given and their isotropy groups and
canonical forms are determined. As an application we discuss Goedel-type
spacetimes in three-dimensional General Relativity. The conditions for local
space and time homogeneity are derived and the equivalence of three-dimensional
Goedel-type spacetimes is studied and the results are compared with previous
works on four-dimensional Goedel-type spacetimes.Comment: 13 pages - content changes and corrected typo
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Serious games for the human behaviour analysis in emergency evacuation scenarios
This paper describes an experiment designed to elicit human behaviour when facing the urgent need of exiting an unknown building. This work is part of a larger effort to devise the methodological approach underlying the implementation of simulation of pedestrians and elicitation of their emergent dynamics, an experimental framework coined SPEED. To validate our experimental setup, a group of 16 experts on fire safety, emergency planning and building evacuation were consulted. The experts were solicited to answer a questionnaire, rating their gaming experiences and validating the questions in the form to be presented to subjects. Their comments were valuable inputs used in the development of the experiment described in this paper. A sample of 62 subjects was then used to test our approach, which consists in having the subjects answering a questionnaire and later on playing a Serious Game resorting to the Unity3D game engine. Some specific scenarios were carefully designed and presented to subjects, both in the questionnaire and in the game environment to maintain consistency of answers. Preliminary results are promising, showing that the challenge made players think about the various situations that might happen when facing an emergency. They are also implied to reason on their stream of decisions, such as which direction to take considering the environment and some adverse situations, such as smoke, fire and people running on the opposite direction of the emergency signage.info:eu-repo/semantics/publishedVersio
Fatores de risco para fratura por osteoporose e baixa densidade óssea em mulheres na pré e pós-menopausa
OBJECTIVE: To estimate the prevalence and analyze risk factors associated to osteoporosis and low-trauma fracture in women. METHODS: Cross-sectional study including a total of 4,332 women older than 40 attending primary care services in the Greater São Paulo, Southeastern Brazil, between 2004 and 2007. Anthropometrical and gynecological data and information about lifestyle habits, previous fracture, medical history, food intake and physical activity were obtained through individual quantitative interviews. Low-trauma fracture was defined as that resulting from a fall from standing height or less in individuals 50 years or older. Multiple logistic regression models were designed having osteoporotic fracture and bone mineral density (BMD) as the dependent variables and all other parameters as the independent ones. The significance level was set at p<0.05. RESULTS: The prevalence of osteoporosis and osteoporotic fractures was 33% and 11.5%, respectively. The main risk factors associated with low bone mass were age (OR=1.07; 95% CI: 1.06;1.08), time since menopause (OR=2.16; 95% CI: 1.49;3.14), previous fracture (OR=2.62; 95% CI: 2.08;3.29) and current smoking (OR=1.45; 95% CI: 1.13;1.85). BMI (OR=0.88; 95% CI: 0.86;0.89), regular physical activity (OR=0.78; 95% CI: 0.65;0.94) and hormone replacement therapy (OR=0.43; 95% CI: 0.33;0.56) had a protective effect on bone mass. Risk factors significantly associated with osteoporotic fractures were age (OR=1.05; 95% CI: 1.04;1.06), time since menopause (OR=4.12; 95% CI: 1.79;9.48), familial history of hip fracture (OR=3.59; 95% CI: 2.88;4.47) and low BMD (OR=2.28; 95% CI: 1.85;2.82). CONCLUSIONS: Advanced age, menopause, low-trauma fracture and current smoking are major risk factors associated with low BMD and osteoporotic fracture. The clinical use of these parameters to identify women at higher risk for fractures might be a reasonable strategy to improve the management of osteoporosis.OBJETIVO: Estimar la prevalencia y analizar los factores de riesgo asociados con osteoporosis y fractura por bajo impacto entre mujeres. MÉTODOS: Estudio transversal realizado con 4.332 mujeres encima de 40 años de edad provenientes de atención primaria de salud en el área metropolitana de la gran São Paulo, SP, entre 2004 2007. Datos antropométricos y ginecológico y relativos a hábitos de vida, fractura previa, antecedentes personales, ingestión alimentaria y actividad física fueron evaluados por medio de entrevista individual y cuantitativa. Fractura por bajo impacto fue definida como decurrente de caída de la propia altura o menos en individuos con más de 50 años de edad. Modelos de regresión multivariada y logística analizaron, respectivamente, la densidad ósea y la fractura por osteoporosis, como variables dependientes y todas las otras como independientes. El nivel de significancia estadística establecido fue p<0,05. RESULTADOS: La prevalencia de osteoporosis y de fracturas por fragilidad ósea fue de 33% y 11,5%, respectivamente. Los principales factores de riesgo asociados con baja densidad ósea fueron edad (OR=1,07; IC 95%: 1,06;1,08), menopausia (OR=2,16; IC 95%: 1,49;3,14), fractura previa (OR=2,62; IC 95%: 2,08;3,29) y tabaquismo actual (OR=1,45; IC 95%: 1,13;1,85). Por otro lado, elevado IMC (OR=0,88; IC 95%: 0,86;0,89), actividad física regular (OR=0,78; IC 95%: 0,65;0,94) y terapia hormonal actual (OR=0,43; IC 95%: 0,33;0,56) desempeñaron papel protector. Los factores de riesgo significantemente relacionados con fractura por osteoporosis fueron edad (OR=1,05; IC 95%: 1,04;1,06), menopausia (OR=4,12; IC 95%: 1,79;9,48), historia familiar de fractura de cuadril (OR=3,59; IC 95%: 2,88;4,47) y baja densidad ósea (OR=2,28; IC 95%: 1,85;2,82). CONCLUSIONES: Edad avanzada, menopausia, fractura previa por bajo impacto y tabaquismo actual son los principales factores de riesgo asociados con baja densidad ósea y esta, con las fracturas por fragilidad ósea. El uso clínico de estos parámetros para identificar mujeres de mayor riesgo para fracturas puede ser una estrategia interesante para mejorar el abordaje de la osteoporosis.OBJETIVO: Estimar a prevalência e analisar os fatores de risco associados com osteoporose e fratura por baixo impacto entre mulheres. MÉTODOS: Estudo transversal realizado com 4.332 mulheres acima de 40 anos de idade provenientes de atendimento primário de saúde na área metropolitana da Grande São Paulo, SP, entre 2004 e 2007. Dados antropométricos e ginecológicos e relativos a hábitos de vida, fratura prévia, antecedentes pessoais, ingestão alimentar e atividade física foram avaliados por meio de entrevista individual e quantitativa. Fratura por baixo impacto foi definida como decorrente de queda da própria altura ou menos em indivíduos com mais de 50 anos de idade. Modelos de regressão multivariada e logística analisaram, respectivamente, a densidade óssea e a fratura por osteoporose como variáveis dependentes e todas as outras como independentes. O nível de significância estatística estabelecido foi p < 0,05. RESULTADOS: A prevalência de osteoporose e de fraturas por fragilidade óssea foi de 33% e 11,5%, respectivamente. Os principais fatores de risco associados com baixa densidade óssea foram idade (OR = 1,07; IC 95%: 1,06;1,08), menopausa (OR = 2,16; IC 95%: 1,49;3,14), fratura prévia (OR = 2,62; IC 95%: 2,08;3,29) e tabagismo atual (OR = 1,45; IC 95%: 1,13;1,85). Por outro lado, elevado IMC (OR = 0,88; IC 95%: 0,86;0,89), atividade física regular (OR = 0,78; IC 95%: 0,65;0,94) e terapia hormonal atual (OR = 0,43; IC 95%: 0,33;0,56) desempenharam papel protetor. Os fatores de risco significativamente relacionados com fratura por osteoporose foram idade (OR = 1,05; IC 95%: 1,04;1,06), menopausa (OR = 4,12; IC 95%: 1,79;9,48), história familiar de fratura de quadril (OR = 3,59; IC 95%: 2,88;4,47) e baixa densidade óssea (OR = 2,28; IC 95%: 1,85;2,82). CONCLUSÕES: Idade avançada, menopausa, fratura prévia por baixo impacto e tabagismo atual são os principais fatores de risco associados com baixa densidade óssea, a qual se associa com as fraturas por fragilidade óssea. O uso clínico desses parâmetros para identificar mulheres de maior risco para fraturas pode ser uma estratégia interessante para melhorar a abordagem da osteoporose.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de MedicinaUNIFESP-EPM Instituto de Diagnóstico por ImagemUNIFESP-EPM Programa de Pós-Graduação em ReumatologiaUNIFESP-EPM Departamento de RadiologiaUNIFESP, EPM, Instituto de Diagnóstico por ImagemUNIFESP, EPM Programa de Pós-Graduação em ReumatologiaUNIFESP, EPM Depto. de RadiologiaSciEL
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Anomalous excitonic phase diagram in band-gap-tuned Ta2Ni(Se,S)5
During a band-gap-tuned semimetal-to-semiconductor transition, Coulomb
attraction between electrons and holes can cause spontaneously formed excitons
near the zero-band-gap point, or the Lifshitz transition point. This has become
an important route to realize bulk excitonic insulators -- an insulating ground
state distinct from single-particle band insulators. How this route manifests
from weak to strong coupling is not clear. In this work, using angle-resolved
photoemission spectroscopy (ARPES) and high-resolution synchrotron x-ray
diffraction (XRD), we investigate the broken symmetry state across the
semimetal-to-semiconductor transition in a leading bulk excitonic insulator
candidate system Ta2Ni(Se,S)5. A broken symmetry phase is found to be
continuously suppressed from the semimetal side to the semiconductor side,
contradicting the anticipated maximal excitonic instability around the Lifshitz
transition. Bolstered by first-principles and model calculations, we find
strong interband electron-phonon coupling to play a crucial role in the
enhanced symmetry breaking on the semimetal side of the phase diagram. Our
results not only provide insight into the longstanding debate of the nature of
intertwined orders in Ta2NiSe5, but also establish a basis for exploring
band-gap-tuned structural and electronic instabilities in strongly coupled
systems.Comment: 27 pages, 4 + 9 figure
- …
