61 research outputs found

    Charged Particle Imaging of the Deprotonated Octatrienoic Acid Anion: Evidence for a Photoinduced Cyclization Reaction

    Get PDF
    Photoelectron spectroscopy of the deprotonated octatrienoic acid anion, [C7H9–CO2]−, shows the formation of [C7H9]− and loss of H– at hν = 4.13 eV. Using velocity map imaging, the H– fragment was characterized to have a Boltzmann-like kinetic energy distribution consistent with dissociation on a ground electronic state. Similar dynamics were not observed at hν = 4.66 eV even though there is clear evidence for recovery of the ground electronic state of [C7H9–CO2]−. In accord with supporting electronic structure calculations, the production of H– at hν = 4.13 eV is explained by excited-state dissociation of CO2 to form [C7H9]−, which subsequently undergoes a ring-closure isomerization reaction to yield toluene and H–. These data represent the first evidence for a photoinduced ring-closing isomerization reaction in an anionic polyene and provides an interesting example of the rich anion dynamics that can occur in the detachment continuum and that can influence photochemistry

    Direct monitoring of photon induced isomerization, dissociation and electron detachment of the green fluorescent protein chromophore anion

    Get PDF
    We present the first experimental demonstration of Z↔E photoisomerization the GFP chromophore anion, HBDI−, in the gas phase. In the single photon absorption regime, the photoisomerization action spectra show two maxima at 480 nm and 455 nm. In the multiphoton absorption regime, photodissociation and photodetachment channels modify the appearance of the photoisomerization band. This work provides a new approach to characterize photoisomerization pathways in biomolecular ions

    Radiative cooling of carbon cluster anions C2n+1− (n = 3–5)

    Get PDF
    Radiative cooling of carbon cluster anions C2n+1− (n = 3–5) is investigated using the cryogenic electrostatic ion storage ring DESIREE. Two different strategies are applied to infer infrared emission on slow (milliseconds to seconds) and ultraslow (seconds to minutes) timescales. Initial cooling of the ions over the millisecond timescale is probed indirectly by monitoring the decay in the yield of spontaneous neutralization by thermionic emission. The observed cooling rates are consistent with a statistical model of thermionic electron emission in competition with infrared photon emission due to vibrational de-excitation. Slower cooling over the seconds to minutes timescale associated with infrared emission from low-frequency vibrational modes is probed using time-dependent action spectroscopy. For C9− and C11−, cooling is evidenced by the time-evolution of the yield of photo-induced neutralization following resonant excitation of electronic transitions near the detachment threshold. The cross-section for resonant photo-excitation is at least two orders of magnitude greater than for direct photodetachment. In contrast, C7− lacks electronic transitions near the detachment threshold

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Ultrafast dynamics of temporary anions probed through the prism of photodetachment

    Get PDF
    The recently developed method of frequency-, angle-, and time-resolved photoelectron imaging (FAT-PI) applied to the study of the dynamics of resonances of open-shell anions is reviewed. The basic principles of the method and its experimental realisation are outlined. The dynamics of a number of radical quinone anions is then considered. Firstly, we show for para-benzoquinone how frequency- and angle-resolved photoelectron imaging provides finger-prints of the dynamics of resonances and then how time-resolved photoelectron imaging yields deep mechanistic insight into the relaxation dynamics of the resonances. The effect of chemical substitutions of the para-quinone electrophore on the dynamics of resonances is discussed. Increasing the conjugation leads to a greatly enhanced ability for resonances to decay to the ground electronic state of the radical anion. Using time-resolved photoelectron spectroscopy, it is shown that the dynamics are facilitated by a bound valence state of the anion. The addition of electron donating methoxy groups leads to a reduced ability to access the ground state compared to para-benzoquinone. Both time-resolved dynamics and calculations provide a rationale for these observations. We consider the benefits and limitations of FAT-PI and its complementarity to 2D electron spectroscopy

    Internal conversion outcompetes autodetachment from resonances in the deprotonated tetracene anion continuum

    Get PDF
    Photoelectron velocity-map imaging and electronic structure calculations have been used to study the temporary anion (resonance) dynamics of the closed-shell site-specific deprotonated tetracene anion (C18H11−) in the hv = 3.26 eV (380 nm) to 4.13 eV (300 nm) range. In accord with a recent frequency-, angle-, and time-resolved photoelectron imaging study on a related but open-shell polyaromatic radical anion (Chem. Sci., 2015, 6, 1578–1589), population of π*-resonances situated in the detachment continuum efficiently recover the ground electronic state of the anion through ultrafast non-adiabatic dynamics, followed by characteristic statistical electron loss (thermionic emission). The combined electron yield of direct photodetachment and autodetachment from the optically-accessed resonances in C18H11− is several orders of magnitude smaller than thermionic emission from the ground electronic electronic state in the photon energy range studied. This result implies a resilience to prompt photoejection from UV radiation, and the ability of neutral PAH-like species to capture a free electron and form a long-lived molecular anion that ultimately decays by thermionic emission on a millisecond timescale. The attachment mechanism applies to polyaromatic species that cannot support dipole-bound states, and may provide an additional route to forming anions in astrochemical environments

    Ultrafast dynamics of formation and autodetachment of a dipole-bound state in an open-shell π-stacked dimer anion

    Get PDF
    Isolated π-stacked dimer radical anions present the simplest model of an excess electron in a π-stacked environment. Here, frequency-, angle-, and time-resolved photoelectron imaging together with electronic structure calculations have been used to characterise the π-stacked coenzyme Q0 dimer radical anion and its exited state dynamics. In the ground electronic state, the excess electron is localised on one monomer with a planar para-quinone ring, which is solvated by the second monomer in which carbonyl groups are bent out of the para-quinone ring plane. Through the π-stacking interaction, the dimer anion exhibits a number of charge-transfer (intermolecular) valence-localised resonances situated in the detachment continuum that undergo efficient internal conversion to a cluster dipole-bound state (DBS) on a ∼60 fs timescale. In turn, the DBS undergoes vibration-mediated autodetachment on a 2.0 ± 0.2 ps timescale. Experimental vibrational structure and supporting calculations assign the intermolecular dynamics to be facilitated by vibrational wagging modes of the carbonyl groups on the non-planar monomer. At photon energies ∼0.6–1.0 eV above the detachment threshold, a competition between photoexcitation of an intermolecular resonance leading to the DBS, and photoexcitation of an intramolecular resonance leading to monomer-like dynamics further illustrates the π-stacking specific dynamics. Overall, this study provides the first direct observation of both internal conversion of resonances into a DBS, and characterisation of a vibration-mediated autodetachment in real-time

    Anion resonances and above-threshold dynamics of coenzyme Q0

    Get PDF
    Temporary radical anions (resonances) of isolated co enzyme Q0 (CQ0) and their associated above-threshold dynamics have been studied using frequency-, angle-, and time-resolved photoelectron imaging (FAT-PI). Experimental energetics and dynamics are supported with ab initio calculations. All results support that CQ0 exhibits similar resonances and energetics compared with the smaller para-benzoquinone subunit, which is commonly considered as a prototype electrophore for larger biological para-quinone species. However, the above-threshold dynamics in CQ0 relative to para-benzoquinone show significantly enhanced prompt detachment compared with internal conversion, particularly around the photoexcitation energy of 3.10 eV. The change in dynamics can be attributed to a combination of an increase in the shape character of the optically-accessible resonance at this energy, a decrease in the autodetachment lifetime due to the higher density of states in the neutral, and a decrease in the probability that the wavepacket formed in the Franck–Condon window can access the local conical intersection in CQ0 over the timescale of autodetachment. Overall, this study serves as a clear example in understanding the trends in spectroscopy and dynamics in relating a simple prototypical para-quinone electrophore to a more complex biochemical species

    Anion Resonances of para-Benzoquinone Probed by Frequency-Resolved Photoelectron Imaging

    Get PDF
    The resonant attachment of a free electron to a closed shell neutral molecule and the interplay between the following electron detachment and electronic relaxation channels represents a fundamental but common process throughout chemical and biochemical systems. The new methodology of anion frequency-resolved photoelectron imaging is detailed and used to map out molecular excited state dynamics of gas-phase para-benzoquinone, which is the electron accepting moiety in many biological electron-transfer chains. Three-dimensional spectra of excitation energy, electron kinetic energy, and electron ejection anisotropy reveal clear fingerprints of excited and intermediate state dynamics. The results show that many of the excited states are strongly coupled, providing a route to forming the ground state radical anion, despite the fact that the electron is formally unbound in the excited states. The relation of our method to electron impact attachment studies and the key advantages, including the extension to time-resolved dynamics and to larger molecular systems, are discussed

    Electron-impact-ionization dynamics of five C2 to C4 perfluorocarbons

    Get PDF
    Perfluorocarbons (PFCs) are man-made compounds whose ion physics exhibit complex interplays between statistical and nonstatistical fragmentation and intramolecular rearrangement processes. One probe of such processes is the energy-dependent electron-impact-ionization cross section. Partial electron-impact-ionization cross sections are reported for the fragments arising from five C2 to C4 PFCs, namely, C2F6, C3F8, C3F6, CF2=CF-CF=CF2, and CF3-C≡C-CF3, over the energy range from threshold to ∼210 eV. Care was taken to maximize ion collection efficiency and to minimize discrimination against ions produced with high kinetic-energy release, and the measured cross sections have been calibrated using independent absolute total (gross) ionization efficiency curves measured previously in the same laboratory with an instrument that was designed to essentially have unit detection efficiency. Total ionization cross sections have also been modeled using the binary-encounter Bethe model, and the shortcomings of the model when applied to perfluorinated compounds are discussed. Analysis of the mass spectral fragmentation patterns in combination with ab initio energetics suggests that nonstatistical dissociative ionization processes play a significant role in the fragmentation dynamics of saturated PFCs. In contrast, unsaturated PFCs exhibit long-lived parent ions, which tend to undergo a higher degree of statistical dissociation following ionization, involving considerable intramolecular rearrangement
    corecore