656 research outputs found

    Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of √s=13  TeV corresponding to an integrated luminosity of 36.1  fb−1. Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing b-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical Z′ bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross sections, the Z′ boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1–3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 to 0.9 TeV and from 2.0 to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles

    Searches for exclusive Higgs and Z boson decays into J/ψγ,ψ(2S)γ,and Υ(nS)γ at √s=13 TeV with the ATLAS detector

    Get PDF
    Searches for the exclusive decays of the Higgs and Z bosons into a J/ψ,ψ(2S), or Υ(nS)(n=1,2,3) meson and a photon are performed with a pp collision data sample corresponding to an integrated luminosity of 36.1 fb −1 collected at √s =13 TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above the expected backgrounds, and 95% confidence-level upper limits on the branching fractions of the Higgs boson decays to J/ψγ, ψ(2S)γ,and Υ(nS)γ of 3.5×10 −4, 2.0×10−3,and(4.9,5.9,5.7)×10 −4,respectively, are obtained assuming Standard Model production. The corresponding 95% confidence-level upper limits for the branching fractions of the Z boson decays are 2.3×10 −6, 4.5×10 −6 and (2.8,1.7,4.8)×10 −6, respectively

    Search for heavy charged long-lived particles in the ATLAS detector in 36.1 fb− 1 of proton-proton collision data at √s =13 TeV

    Get PDF
    A search for heavy charged long-lived particles is performed using a data sample of 36.1 fb−1 of proton-proton collisions at √s =13 TeV collected by the ATLAS experiment at the Large Hadron Collider. The search is based on observables related to ionization energy loss and time of flight, which are sensitive to the velocity of heavy charged particles traveling significantly slower than the speed of light. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined as model independently as possible, by referencing several representative physics cases that yield long-lived particles within supersymmetric models, such as gluinos/squarks (R-hadrons), charginos and staus. No significant deviations from the expected Standard Model background are observed. Upper limits at 95% confidence level are provided on the production cross sections of long-lived R-hadrons as well as directly pair produced staus and charginos. These results translate into lower limits on the masses of long-lived gluino, sbottom and stop R-hadrons, as well as staus and charginos of 2000, 1250, 1340, 430, and 1090 GeV, respectively

    Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetric partners of top quarks decaying as t ~ 1 →cχ ~ 0 1 and supersymmetric partners of charm quarks decaying as c ~ 1 →cχ ~ 0 1, where χ ~ 0 1 is the lightest neutralino, is presented. The search uses 36.1 fb −1 pp collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to cχ ~ 0 1, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For m t ~ 1 ,c ~ 1 −m χ ~ 0 1 < 100 GeV, top and charm squark masses up to 500 GeV are excluded

    Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton-proton collision data

    Get PDF
    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using about 36 fb−1 of LHC proton-proton collision data recorded at √s = 13 TeV in 2015 and 2016. The different calibration steps applied to the data and the optimization of the reconstruction of electron and photon energies are discussed. The absolute energy scale is set using a large sample of Z boson decays into electron-positron pairs. The systematic uncertainty in the energy scale calibration varies between 0.03% to 0.2% in most of the detector acceptance for electrons with transverse momentum close to 45 GeV. For electrons with transverse momentum of 10 GeV the typical uncertainty is 0.3% to 0.8% and it varies between 0.25% and 1% for photons with transverse momentum around 60 GeV. Validations of the energy calibration with J/ψ → e + e − decays and radiative Z boson decays are also presented

    Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb−1 of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for heavy neutral Higgs bosons and Z′ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb−1 from proton-proton collisions at √s=13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to τ+τ− with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for Z′ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude tan β > 1.0 for mA= 0.25 TeV and tan β > 42 for mA=1.5 TeV at the 95% confidence level. For the Sequential Standard Model, ZSSM′ with mZ′< 2.42 TeV is excluded at 95% confidence level, while Z NU′ with mZ ′ < 2.25 TeV is excluded for the non-universal G(221) model that exhibits enhanced couplings to third-generation fermions

    Measurement of the Higgs boson mass in the H→ZZ ∗ →4ℓ and H→γγ channels with √s =13 TeV pp collisions using the ATLAS detector

    Get PDF
    The mass of the Higgs boson is measured in the H→ZZ ∗ →4ℓ and in the H→γγ decay channels with 36.1 fb −1 of proton-proton collision data from the Large Hadron Collider at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector in 2015 and 2016. The measured value in the H→ZZ ∗ →4ℓ channel is m ZZ ∗ H =124.79±0.37 GeV, while the measured value in the H→γγ channel is m γγ H =124.93±0.40 GeV. Combining these results with the ATLAS measurement based on 7 TeV and 8 TeV proton-proton collision data yields a Higgs boson mass of m H =124.97±0.24 GeV

    Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for dark matter (DM) particles produced in association with a hadronically decaying vector boson is performed using pp collision data at a centre-of-mass energy of √s=13 TeV corresponding to an integrated luminosity of 36.1 fb−1, recorded by the ATLAS detector at the Large Hadron Collider. This analysis improves on previous searches for processes with hadronic decays of W and Z bosons in association with large missing transverse momentum (mono-W/Z searches) due to the larger dataset and further optimization of the event selection and signal region definitions. In addition to the mono-W/Z search, the as yet unexplored hypothesis of a new vector boson Z′ produced in association with dark matter is considered (mono-Z′ search). No significant excess over the Standard Model prediction is observed. The results of the mono-W/Z search are interpreted in terms of limits on invisible Higgs boson decays into dark matter particles, constraints on the parameter space of the simplified vector-mediator model and generic upper limits on the visible cross sections for W/Z+DM production. The results of the mono-Z′ search are shown in the framework of several simplified-model scenarios involving DM production in association with the Z′ boson

    Prompt and non-prompt J/ψ elliptic flow in Pb+Pb collisions at √sNN =5.02 TeV with the ATLAS detector

    Get PDF
    The elliptic flow of prompt and non-prompt J/ψ was measured in the dimuon decay channel in Pb+Pb collisions at √sNN = 5.02 TeV with an integrated luminosity of 0.42 nb −1 with the ATLAS detector at the LHC. The prompt and non-prompt signals are separated using a two-dimensional simultaneous fit of the invariant mass and pseudo-proper decay time of the dimuon system from the J/ψ decay. The measurement is performed in the kinematic range of dimuon transverse momentum and rapidity 9<p T <30 GeV,|y|<2 , and 0-60% collision centrality. The elliptic flow coefficient,v2, is evaluated relative to the event plane and the results are presented as a function of transverse momentum, rapidity and centrality. It is found that prompt and non-prompt J/ψ mesons have non-zero elliptic flow. Prompt J/ψ v 2 decreases as a function of p T , while non-prompt J/ψ it is, with limited statistical significance, consistent with a flat behaviour over the studied kinematic region. There is no observed dependence on rapidity or centrality

    Measurement of jet fragmentation in Pb+Pb and pp collisions at √s NN =5.02 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of jet fragmentation functions in 0.49 nb −1 of Pb+Pb collisions and 25 pb −1 of pp collisions at √ sNN =5.02 TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in pp collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed
    corecore