35 research outputs found

    Spectroscopic data de-noising via training-set-free deep learning method

    Full text link
    De-noising plays a crucial role in the post-processing of spectra. Machine learning-based methods show good performance in extracting intrinsic information from noisy data, but often require a high-quality training set that is typically inaccessible in real experimental measurements. Here, using spectra in angle-resolved photoemission spectroscopy (ARPES) as an example, we develop a de-noising method for extracting intrinsic spectral information without the need for a training set. This is possible as our method leverages the self-correlation information of the spectra themselves. It preserves the intrinsic energy band features and thus facilitates further analysis and processing. Moreover, since our method is not limited by specific properties of the training set compared to previous ones, it may well be extended to other fields and application scenarios where obtaining high-quality multidimensional training data is challenging

    FLatten Transformer: Vision Transformer using Focused Linear Attention

    Full text link
    The quadratic computation complexity of self-attention has been a persistent challenge when applying Transformer models to vision tasks. Linear attention, on the other hand, offers a much more efficient alternative with its linear complexity by approximating the Softmax operation through carefully designed mapping functions. However, current linear attention approaches either suffer from significant performance degradation or introduce additional computation overhead from the mapping functions. In this paper, we propose a novel Focused Linear Attention module to achieve both high efficiency and expressiveness. Specifically, we first analyze the factors contributing to the performance degradation of linear attention from two perspectives: the focus ability and feature diversity. To overcome these limitations, we introduce a simple yet effective mapping function and an efficient rank restoration module to enhance the expressiveness of self-attention while maintaining low computation complexity. Extensive experiments show that our linear attention module is applicable to a variety of advanced vision Transformers, and achieves consistently improved performances on multiple benchmarks. Code is available at https://github.com/LeapLabTHU/FLatten-Transformer.Comment: ICCV 202

    Superconducting fluctuations and charge-4ee plaquette state at strong coupling

    Full text link
    Recent experiments indicate that superconducting fluctuations also play an important role in overdoped cuprates. Here we apply the static auxiliary field Monte Carlo approach to study phase correlations of the pairing fields in a microscopic model with spin-singlet pairing interaction. We find that the short- and long-range phase correlations are well captured by the phase mutual information, which allows us to construct a theoretical phase diagram containing the uniform dd-wave superconducting region, the phase fluctuating region, the local pairing region, and the disordered region. We show that the gradual development of phase coherence has a number of consequences on spectroscopic measurements, such as the development of the Fermi arc and the anisotropy in the angle-resolved spectra, scattering rate, entropy, specific heat, and quasiparticle dispersion, in good agreement with experimental observations. For strong coupling, our Monte Carlo simulation reveals an unexpected charge-4ee plaquette state with dd-wave bonds, which competes with the uniform dd-wave superconductivity and exhibits a U-shaped density of states

    Open Design and 3D Printing of Face Shields: The Case Study of a UK-China Initiative

    Get PDF
    At the start of the COVID-19 outbreak, many countries lacked personal protective equipment (PPE) to protect healthcare workers. To address this problem, open design and 3D printing technologies were adopted to provide much-in-need PPEs for key workers. This paper reports an initiative by designers and engineers in the UK and China. The case study approach and content analysis method were used to study the stakeholders, the design process, and other relevant issues such as regulation. Good practice and lessons were summarised, and suggestions for using distributed 3D printing to supply PPEs were made. It concludes that 3D printing has played an important role in producing PPEs when there was a shortage of supply, and distributed manufacturing has the potential to quickly respond to local small-bench production needs. In the future, clearer specification, better match of demands and supply, and quicker evaluation against relevant regulations will provide efficiency and quality assurance for 3D printed PPE supplies

    Dynamic Perceiver for Efficient Visual Recognition

    Full text link
    Early exiting has become a promising approach to improving the inference efficiency of deep networks. By structuring models with multiple classifiers (exits), predictions for ``easy'' samples can be generated at earlier exits, negating the need for executing deeper layers. Current multi-exit networks typically implement linear classifiers at intermediate layers, compelling low-level features to encapsulate high-level semantics. This sub-optimal design invariably undermines the performance of later exits. In this paper, we propose Dynamic Perceiver (Dyn-Perceiver) to decouple the feature extraction procedure and the early classification task with a novel dual-branch architecture. A feature branch serves to extract image features, while a classification branch processes a latent code assigned for classification tasks. Bi-directional cross-attention layers are established to progressively fuse the information of both branches. Early exits are placed exclusively within the classification branch, thus eliminating the need for linear separability in low-level features. Dyn-Perceiver constitutes a versatile and adaptable framework that can be built upon various architectures. Experiments on image classification, action recognition, and object detection demonstrate that our method significantly improves the inference efficiency of different backbones, outperforming numerous competitive approaches across a broad range of computational budgets. Evaluation on both CPU and GPU platforms substantiate the superior practical efficiency of Dyn-Perceiver. Code is available at https://www.github.com/LeapLabTHU/Dynamic_Perceiver.Comment: Accepted at ICCV 202

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Tidal characteristics near the Chinese Zhongshan Station in Prydz Bay, East Antarctica

    Get PDF
    A permanent tidal station was installed at the Chinese Zhongshan Station in Feb. 2010. Harmonic constants of 170 tidal constituents were obtained from harmonic analysis of the first year’s data. The results of the eight main constituents showed good agreement with those of two tidal models. Tidal characteristics, such as tide type, diurnal inequality, tidal range, and water levels were also analyzed
    corecore